Long-Term Dynamics of the Thermal State of Technogenic Plots in Siberia Based on Satellite Data †
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dror, I.; Yaron, B.; Berkowitz, B. The Human Impact on All Soil-Forming Factors during the Anthropocene. ACS Environ. 2020, 2, 11–19. [Google Scholar] [CrossRef]
- Kirdyanov, A.; Saurer, M.; Siegwolf, R.; Knorre, A.; Prokushkin, A.S.; Churakova, O.; Fonti, M.V.; Büntgen, U. Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environ. Res. Lett. 2020, 15, 034061. [Google Scholar] [CrossRef]
- Ponomareva, T.V.; Kovaleva, N.M.; Shishikin, A.S.; Ponomarev, E.I. Biodiversity assessment in the area of Olimpiada mining and processing plant, Polyus Krasnoyarsk. Gorn. Zhurnal 2020, 10, 48–53. [Google Scholar] [CrossRef]
- Bartalev, S.A.; Stytsenko, F.V. An Assessment of the Forest Stands Destruction by Fires Based on the Remote Sensing Data on a Seasonal Distribution of Burnt Areas. Russ. J. For. Sci. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- de Andres, E.G.; Shestakova, T.A.; Scholten, R.C.; Delcourt Clement, J.F.; Gorina, N.; Camarero, J.J. Changes in tree growth synchrony and resilience in Siberian Pinus sylvestris forests are modulated by fire dynamics and ecohydrological conditions. Agric. For. Meteorol. 2022, 312, 108712. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ponomarev, E.I.; Ivanova, G.A.; Dvinskaya, M.L.; Coogan, S.C.P.; Flannigan, M.D. Wildfires in the Siberian taiga. Ambio 2021, 50, 1953–1974. [Google Scholar] [CrossRef] [PubMed]
- Ponomarev, E.I.; Masyagina, O.V.; Litvintsev, K.Y.; Ponomareva, T.V.; Shvetsov, E.G.; Finnikov, K.A. The effect of post-fire disturbances on a seasonally thawed layer in the permafrost larch forests of Central Siberia. Forests 2020, 11, 790. [Google Scholar] [CrossRef]
- Sokolov, D.A.; Androkhanov, V.A.; Abakumov, E.V. Soil formation in technogenic landscapes: Trends, results, and representation in the current classifications (Review). Vestn. Tomsk. Gos. Univ. Biologiya. Tomsk State Univ. J. Biol. 2021, 56, 6–32. [Google Scholar] [CrossRef]
- Herrick, J.E.; Brown, J.R.; Bestelmeyer, B.T.; Andrews, S.S.; Baldi, G.; Davies, J.; Duniway, M.; Havstad, K.M.; Karl, J.W.; Karlen, D.L.; et al. Revolutionary land use change in the 21st Century: Is (Rangeland) science relevant. Rangel. Ecol. Manag. 2012, 65, 590–598. [Google Scholar] [CrossRef]
- Uzarowicz, Ł.; Charzyński, P.; Greinert, A.; Hulisz, P.; Kabała, C.; Kusza, G.; Kwasowski, W.; Pędziwiatr, A. Studies of technogenic soils in Poland: Past, present, and future perspectives. Soil Sci. Annu. 2020, 71, 281–299. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Progress Reports RSC 1978-1 93; Texas A & M University: College Station, TX, USA, 1973. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations Monitoring Vegetation. J. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Delcourt, C.J.F.; Combee, A.; Izbicki, B.; Mack, M.C.; Maximov, T.; Petrov, R.; Rogers, B.M.; Scholten, R.C.; Shestakova, T.A.; van Wees, D.; et al. Evaluating the Differenced Normalized Burn Ratio for Assessing Fire Severity Using Sentinel-2 Imagery in Northeast Siberian Larch Forests. Remote Sens 2021, 13, 2311. [Google Scholar] [CrossRef]
- Bezkorovainaya, I.N.; Borisova, I.V.; Klimchenko, A.V.; Shabalina, O.M.; Zakharchenko, L.P.; Ilyin, A.A.; Beskrovny, A.K. The influence of pyrogenic factor on biological activity of soils under conditions of permafrost (Central Evenkia). Bull. KSAU 2017, 9, 181–189. (In Russian) [Google Scholar]
- Zhang-Turpeinen, H.; Kivimäenpää, M.; Berninger, F.; Köster, K.; Zhao, P.; Zhou, X.; Pumpanen, J. Age-related response of forest floor biogenic volatile organic compound fluxes to boreal forest succession after wildfires. Agric. For. Meteorol. 2021, 308–309, 108584. [Google Scholar] [CrossRef]
- Ponomareva, T.V.; Litvintsev, K.Y.; Finnikov, K.A.; Yakimov, N.D.; Sentyabov, A.V.; Ponomarev, E.I. Soil Temperature in Disturbed Ecosystems of Central Siberia: Remote Sensing Data and Numerical Simulation. Forests 2021, 12, 994. [Google Scholar] [CrossRef]
- Ponomarev, E.I.; Ponomareva, T.V. The Effect of Postfire Temperature Anomalies on Seasonal Soil Thawing in the Permafrost Zone of Central Siberia Evaluated Using Remote Data. Contemp. Probl. Ecol. 2018, 11, 420–427. [Google Scholar] [CrossRef]
- Yakimov, N.D.; Ponomarev, E.I.; Ponomareva, T.V. Satellite data in thermal range for natural and technogenic ecosystems monitoring. E3S Web Conf. 2021, 333, 02017. [Google Scholar] [CrossRef]
- Knorre, A.A.; Kirdyanov, A.V.; Prokushkin, A.S.; Krusic, P.J.; Büntgen, U. Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia. Sci. Total Environ. 2019, 652, 314–319. [Google Scholar] [CrossRef] [PubMed]
Plot | Disturbed Area, 103 ha | Start of Industrial Development of the Territory, Year | Background Soils (WRB) | Vegetation Types |
---|---|---|---|---|
NMP | 0.92 | 1990 | Cryosols (CR); Turbic Spodic Follic Cryosols (CR-fo.sd.tu); Entic Podzols (PZ-et) | Larch/pine forests with birch and aspen |
VMP | 1.08 | 2011 | Turbic Cryosols (CR-tu); Turbic Spodic Follic Cryosols (CR-fo.sd.tu); Gleyic Fluvisols (FL-gl) | Tundra vegetation and forest tundra |
KMP | 3.46 | 1965 | Turbic Cryosols (CR-tu); Turbic Spodic Follic Cryosols (CR-fo.sd.tu); Gleyic Cryosols (CR-gl); Gleyic Fluvisols (FL-gl) | Larch forests, mountain tundra vegetation |
OMP | 3.15 | 1990 | Cryosols (CR); Entic Podzols (PZ-et) | Pine forests, larch forests and dark coniferous spruce/fir forests |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponomareva, T.; Yakimov, N.; Ponomarev, G.; Ponomarev, E. Long-Term Dynamics of the Thermal State of Technogenic Plots in Siberia Based on Satellite Data. Environ. Sci. Proc. 2022, 22, 49. https://doi.org/10.3390/IECF2022-13081
Ponomareva T, Yakimov N, Ponomarev G, Ponomarev E. Long-Term Dynamics of the Thermal State of Technogenic Plots in Siberia Based on Satellite Data. Environmental Sciences Proceedings. 2022; 22(1):49. https://doi.org/10.3390/IECF2022-13081
Chicago/Turabian StylePonomareva, Tatiana, Nikita Yakimov, Georgy Ponomarev, and Evgenii Ponomarev. 2022. "Long-Term Dynamics of the Thermal State of Technogenic Plots in Siberia Based on Satellite Data" Environmental Sciences Proceedings 22, no. 1: 49. https://doi.org/10.3390/IECF2022-13081
APA StylePonomareva, T., Yakimov, N., Ponomarev, G., & Ponomarev, E. (2022). Long-Term Dynamics of the Thermal State of Technogenic Plots in Siberia Based on Satellite Data. Environmental Sciences Proceedings, 22(1), 49. https://doi.org/10.3390/IECF2022-13081