Long-Term Dynamics of the Thermal State of Technogenic Plots in Siberia Based on Satellite Data †
Abstract
1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dror, I.; Yaron, B.; Berkowitz, B. The Human Impact on All Soil-Forming Factors during the Anthropocene. ACS Environ. 2020, 2, 11–19. [Google Scholar] [CrossRef]
- Kirdyanov, A.; Saurer, M.; Siegwolf, R.; Knorre, A.; Prokushkin, A.S.; Churakova, O.; Fonti, M.V.; Büntgen, U. Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environ. Res. Lett. 2020, 15, 034061. [Google Scholar] [CrossRef]
- Ponomareva, T.V.; Kovaleva, N.M.; Shishikin, A.S.; Ponomarev, E.I. Biodiversity assessment in the area of Olimpiada mining and processing plant, Polyus Krasnoyarsk. Gorn. Zhurnal 2020, 10, 48–53. [Google Scholar] [CrossRef]
- Bartalev, S.A.; Stytsenko, F.V. An Assessment of the Forest Stands Destruction by Fires Based on the Remote Sensing Data on a Seasonal Distribution of Burnt Areas. Russ. J. For. Sci. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- de Andres, E.G.; Shestakova, T.A.; Scholten, R.C.; Delcourt Clement, J.F.; Gorina, N.; Camarero, J.J. Changes in tree growth synchrony and resilience in Siberian Pinus sylvestris forests are modulated by fire dynamics and ecohydrological conditions. Agric. For. Meteorol. 2022, 312, 108712. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ponomarev, E.I.; Ivanova, G.A.; Dvinskaya, M.L.; Coogan, S.C.P.; Flannigan, M.D. Wildfires in the Siberian taiga. Ambio 2021, 50, 1953–1974. [Google Scholar] [CrossRef] [PubMed]
- Ponomarev, E.I.; Masyagina, O.V.; Litvintsev, K.Y.; Ponomareva, T.V.; Shvetsov, E.G.; Finnikov, K.A. The effect of post-fire disturbances on a seasonally thawed layer in the permafrost larch forests of Central Siberia. Forests 2020, 11, 790. [Google Scholar] [CrossRef]
- Sokolov, D.A.; Androkhanov, V.A.; Abakumov, E.V. Soil formation in technogenic landscapes: Trends, results, and representation in the current classifications (Review). Vestn. Tomsk. Gos. Univ. Biologiya. Tomsk State Univ. J. Biol. 2021, 56, 6–32. [Google Scholar] [CrossRef]
- Herrick, J.E.; Brown, J.R.; Bestelmeyer, B.T.; Andrews, S.S.; Baldi, G.; Davies, J.; Duniway, M.; Havstad, K.M.; Karl, J.W.; Karlen, D.L.; et al. Revolutionary land use change in the 21st Century: Is (Rangeland) science relevant. Rangel. Ecol. Manag. 2012, 65, 590–598. [Google Scholar] [CrossRef]
- Uzarowicz, Ł.; Charzyński, P.; Greinert, A.; Hulisz, P.; Kabała, C.; Kusza, G.; Kwasowski, W.; Pędziwiatr, A. Studies of technogenic soils in Poland: Past, present, and future perspectives. Soil Sci. Annu. 2020, 71, 281–299. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Progress Reports RSC 1978-1 93; Texas A & M University: College Station, TX, USA, 1973. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations Monitoring Vegetation. J. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Delcourt, C.J.F.; Combee, A.; Izbicki, B.; Mack, M.C.; Maximov, T.; Petrov, R.; Rogers, B.M.; Scholten, R.C.; Shestakova, T.A.; van Wees, D.; et al. Evaluating the Differenced Normalized Burn Ratio for Assessing Fire Severity Using Sentinel-2 Imagery in Northeast Siberian Larch Forests. Remote Sens 2021, 13, 2311. [Google Scholar] [CrossRef]
- Bezkorovainaya, I.N.; Borisova, I.V.; Klimchenko, A.V.; Shabalina, O.M.; Zakharchenko, L.P.; Ilyin, A.A.; Beskrovny, A.K. The influence of pyrogenic factor on biological activity of soils under conditions of permafrost (Central Evenkia). Bull. KSAU 2017, 9, 181–189. (In Russian) [Google Scholar]
- Zhang-Turpeinen, H.; Kivimäenpää, M.; Berninger, F.; Köster, K.; Zhao, P.; Zhou, X.; Pumpanen, J. Age-related response of forest floor biogenic volatile organic compound fluxes to boreal forest succession after wildfires. Agric. For. Meteorol. 2021, 308–309, 108584. [Google Scholar] [CrossRef]
- Ponomareva, T.V.; Litvintsev, K.Y.; Finnikov, K.A.; Yakimov, N.D.; Sentyabov, A.V.; Ponomarev, E.I. Soil Temperature in Disturbed Ecosystems of Central Siberia: Remote Sensing Data and Numerical Simulation. Forests 2021, 12, 994. [Google Scholar] [CrossRef]
- Ponomarev, E.I.; Ponomareva, T.V. The Effect of Postfire Temperature Anomalies on Seasonal Soil Thawing in the Permafrost Zone of Central Siberia Evaluated Using Remote Data. Contemp. Probl. Ecol. 2018, 11, 420–427. [Google Scholar] [CrossRef]
- Yakimov, N.D.; Ponomarev, E.I.; Ponomareva, T.V. Satellite data in thermal range for natural and technogenic ecosystems monitoring. E3S Web Conf. 2021, 333, 02017. [Google Scholar] [CrossRef]
- Knorre, A.A.; Kirdyanov, A.V.; Prokushkin, A.S.; Krusic, P.J.; Büntgen, U. Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia. Sci. Total Environ. 2019, 652, 314–319. [Google Scholar] [CrossRef] [PubMed]
Plot | Disturbed Area, 103 ha | Start of Industrial Development of the Territory, Year | Background Soils (WRB) | Vegetation Types |
---|---|---|---|---|
NMP | 0.92 | 1990 | Cryosols (CR); Turbic Spodic Follic Cryosols (CR-fo.sd.tu); Entic Podzols (PZ-et) | Larch/pine forests with birch and aspen |
VMP | 1.08 | 2011 | Turbic Cryosols (CR-tu); Turbic Spodic Follic Cryosols (CR-fo.sd.tu); Gleyic Fluvisols (FL-gl) | Tundra vegetation and forest tundra |
KMP | 3.46 | 1965 | Turbic Cryosols (CR-tu); Turbic Spodic Follic Cryosols (CR-fo.sd.tu); Gleyic Cryosols (CR-gl); Gleyic Fluvisols (FL-gl) | Larch forests, mountain tundra vegetation |
OMP | 3.15 | 1990 | Cryosols (CR); Entic Podzols (PZ-et) | Pine forests, larch forests and dark coniferous spruce/fir forests |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponomareva, T.; Yakimov, N.; Ponomarev, G.; Ponomarev, E. Long-Term Dynamics of the Thermal State of Technogenic Plots in Siberia Based on Satellite Data. Environ. Sci. Proc. 2022, 22, 49. https://doi.org/10.3390/IECF2022-13081
Ponomareva T, Yakimov N, Ponomarev G, Ponomarev E. Long-Term Dynamics of the Thermal State of Technogenic Plots in Siberia Based on Satellite Data. Environmental Sciences Proceedings. 2022; 22(1):49. https://doi.org/10.3390/IECF2022-13081
Chicago/Turabian StylePonomareva, Tatiana, Nikita Yakimov, Georgy Ponomarev, and Evgenii Ponomarev. 2022. "Long-Term Dynamics of the Thermal State of Technogenic Plots in Siberia Based on Satellite Data" Environmental Sciences Proceedings 22, no. 1: 49. https://doi.org/10.3390/IECF2022-13081
APA StylePonomareva, T., Yakimov, N., Ponomarev, G., & Ponomarev, E. (2022). Long-Term Dynamics of the Thermal State of Technogenic Plots in Siberia Based on Satellite Data. Environmental Sciences Proceedings, 22(1), 49. https://doi.org/10.3390/IECF2022-13081