Feasibility of Ultrasonic Sensors in Development of Real-Time Plant Canopy Measurement System †
Abstract
:1. Introduction
2. System Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vázquez-Arellano, M.; Griepentrog, H.W.; Reiser, D.; Paraforos, D.S. 3-D imaging systems for agricultural applications—A review. Sensors 2016, 16, 618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blais, F. Review of 20 years of range sensor development. J. Electron. Imaging 2004, 13, 231–240. [Google Scholar] [CrossRef]
- Nan, Y.; Zhang, H.; Xu, Y.; Jiao, X.; Zheng, J.; Liu, D. Research progress on profiling target spray and its control technology in agriculture and forestry. World For. Res. 2018, 31, 54–58. [Google Scholar]
- Jeon, H.Y.; Zhu, H. Development of a variable-rate sprayer for nursery liner applications. Trans. ASABE 2012, 55, 303–312. [Google Scholar] [CrossRef]
- Gil, E.; Escolà, A.; Rosell, J.R.; Planas, S.; Val, L. Variable rate application of plant protection products in vineyard using ultrasonic sensors. Crop Prot. 2007, 26, 1287–1297. [Google Scholar] [CrossRef] [Green Version]
- Palleja, T.; Landers, A.J. Real time canopy density validation using ultrasonic envelope signals and point quadrat analysis. Comput. Electron. Agric. 2017, 134, 43–50. [Google Scholar] [CrossRef]
- Nan, Y.; Zhang, H.; Zheng, J.; Bian, L. Estimating leaf area density of Osmanthus trees using ultrasonic sensing ScienceDirect Estimating leaf area density of Osmanthus trees using ultrasonic sensing. Biosyst. Eng. 2019, 186, 60–70. [Google Scholar] [CrossRef]
- Palacín, J.; Pallejà, T.; Tresanchez, M.; Sanz, R.; Llorens, J.; Ribes-Dasi, M.; Masip, J.; Arno, J.; Escola, A.; Rosell, J.R. Real-time tree-foliage surface estimation using a ground laser scanner. IEEE Trans. Instrum. Meas. 2007, 56, 1377–1383. [Google Scholar] [CrossRef] [Green Version]
- Palacin, J.; Palleja, T.; Tresanchez, M.; Teixido, M.; Sanz, R.; Llorens, J.; Arno, J.; Rosell, J.R. Difficulties on tree volume measurement from a ground laser scanner. In Proceedings of the 2008 IEEE Instrumentation and Measurement Technology Conference, Victoria, BC, Canada, 12–15 May 2008; pp. 1997–2002. [Google Scholar]
- Deepak, B.B.V.L.; Bahubalendruni, M.V.A.R.; Biswal, B.B. Development of in-pipe robots for inspection and cleaning tasks: Survey, classification and comparison. Int. J. Intell. Unmanned Syst. 2016, 4, 182–210. [Google Scholar] [CrossRef]
- Morgan, E.J. HC—SR04 Ultrasonic Sensor Datasheet. Available online: https://docplayer.net/23967545-Hc-sr04-ultrasonic-sensor-elijah-j-morgan-nov.html (accessed on 20 December 2022).
- Schumann, A.W.; Zaman, Q.U. Software development for real-time ultrasonic mapping of tree canopy size. Comput. Electron. Agric. 2005, 47, 25–40. [Google Scholar] [CrossRef]
Object Distance (cm) | Sensor Spacing (cm) | |||
---|---|---|---|---|
30 | 60 | 75 | 90 | |
25 | NI | NI | NI | NI |
43 | I | NI | NI | NI |
73 | I | I | NI | NI |
84 | I | I | I | NI |
98 | I | I | I | I |
Angle | Actual Distance (cm) | Measure Distance (cm) | Error (cm) |
---|---|---|---|
0° | 55 | 52 | 2 |
105 | 108 | 3 | |
150 | 156 | 6 | |
10° | 55 | 52 | 2 |
105 | 108 | 3 | |
150 | 155 | 5 | |
15° | 55 | 53 | 3 |
105 | 109 | 4 | |
150 | 158 | 8 | |
20° | 55 | Out of range | Out of range |
105 | Out of range | Out of range | |
150 | Out of range | Out of range |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaleem, A.; Aqib, M.; Saleem, S.R.; Cheema, M.J.M. Feasibility of Ultrasonic Sensors in Development of Real-Time Plant Canopy Measurement System. Environ. Sci. Proc. 2022, 23, 22. https://doi.org/10.3390/environsciproc2022023022
Kaleem A, Aqib M, Saleem SR, Cheema MJM. Feasibility of Ultrasonic Sensors in Development of Real-Time Plant Canopy Measurement System. Environmental Sciences Proceedings. 2022; 23(1):22. https://doi.org/10.3390/environsciproc2022023022
Chicago/Turabian StyleKaleem, Abdul, Muhammad Aqib, Shoaib Rashid Saleem, and Muhammad Jahanzeb Masud Cheema. 2022. "Feasibility of Ultrasonic Sensors in Development of Real-Time Plant Canopy Measurement System" Environmental Sciences Proceedings 23, no. 1: 22. https://doi.org/10.3390/environsciproc2022023022
APA StyleKaleem, A., Aqib, M., Saleem, S. R., & Cheema, M. J. M. (2022). Feasibility of Ultrasonic Sensors in Development of Real-Time Plant Canopy Measurement System. Environmental Sciences Proceedings, 23(1), 22. https://doi.org/10.3390/environsciproc2022023022