A Machine Learning Approach for Rainfall Nowcasting Using Numerical Model and Observational Data †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.1.1. Dataset Description
2.1.2. Data Preprocessing
Missing Values and Detection of Outliers
Data Normalization
2.2. Machine Learning Models and Methods
2.2.1. Training and Test Data
2.2.2. Evaluation Metrics
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olawoyin, A.M.; Leung, C.K.; Hryhoruk, C.C.J.; Cuzzocrea, A. Big Data Management for Machine Learning from Big Data. In Proceedings of the 37th International Conference on Advanced Information Networking and Applications (AINA-2023), Juiz de Fora, Brazil, 29–31 March 2023; pp. 393–405. [Google Scholar] [CrossRef]
- Hussein, E.; Sadiki, R.; Jafta, Y.; Sungay, M.M.; Ajayi, O.; Bagula, A. Big Data Processing Using Hadoop and Spark: The Case of Meteorology Data. In Proceedings of the 11th EAI International Conference, AFRICOMM 2019, Porto-Novo, Benin, 3–4 December 2019; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. 2020; pp. 180–185. [Google Scholar] [CrossRef]
- World Health Organization: Climate Change and Human Health: Risks and Responses. World Health Organization, January 2003. Available online: https://apps.who.int/iris/handle/10665/42749 (accessed on 25 April 2023).
- WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019) (WMO-No. 1267). Available online: https://library.wmo.int/index.php?lvl=notice_display&id=21930#.ZGJGDs5ByUm (accessed on 26 April 2023).
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; 3056p. [Google Scholar] [CrossRef]
- Papagiannaki, K.; Diakakis, M.; Kotroni, V.; Lagouvardos, K.; Andreadakis, E. Hydrogeological and Climatological Risks Perception in a Multi-Hazard Environment: The Case of Greece. Water 2019, 11, 1770. [Google Scholar] [CrossRef]
- Papagiannaki, K.; Kotroni, V.; Lagouvardos, K.; Ruin, I.; Bezes, A. Urban Area Response to Flash Flood–Triggering Rainfall, Featuring Human Behavioral Factors: The Case of 22 October 2015 in Attica, Greece. Weather. Clim. Soc. 2017, 9, 621–638. [Google Scholar] [CrossRef]
- Kotroni, V.; Lagouvardos, K.; Bezes, A.; Dafis, S.; Galanaki, E.; Giannaros, C.; Giannaros, T.; Karagiannidis, A.; Koletsis, I.; Kopania, T.; et al. Storm Naming in the Eastern Mediterranean: Procedures, Events Review and Impact on the Citizens Risk Perception and Readiness. Atmosphere 2021, 12, 1537. [Google Scholar] [CrossRef]
- Liyew, C.M.; Melese, H.A. Machine Learning Techniques to Predict Daily Rainfall Amount. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Knapp, K.R.; Ansari, S.; Bain, C.L.; Bourassa, M.A.; Dickinson, M.J.; Funk, C.; Helms, C.N.; Hennon, C.C.; Holmes, C.D.; Huffman, G.J.; et al. Globally Gridded Satellite Observations for Climate Studies. Bull. Am. Meteorol. Soc. 2011, 92, 893–907. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Bezes, A.; Koletsis, I.; Kopania, T.; Lykoudis, S.; Mazarakis, N.; Papagiannaki, K.; Vougioukas, S. The Automatic Weather Stations NOANN Network of the National Observatory of Athens: Operation and Database. Geosci. Data J. 2017, 4, 4–16. [Google Scholar] [CrossRef]
- Iliou, T.; Anagnostopoulos, C.-N.; Nerantzaki, M.; Anastassopoulos, G. A Novel Machine Learning Data Preprocessing Method for Enhancing Classification Algorithms Performance. In Proceedings of the 16th International Conference on Engineering Applications of Neural Networks (INNS), Rhodes Island, Greece, 25–28 September 2015. [Google Scholar] [CrossRef]
- Somasundaram, R.S.; Nedunchezhian, R. Evaluation of Three Simple Imputation Methods for Enhancing Preprocessing of Data with Missing Values. Int. J. Comput. Appl. 2011, 21, 14–19. [Google Scholar] [CrossRef]
- Taylor, J.K.; Cihon, C. Statistical Techniques for Data Analysis; Taylor & Francis Group: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Patro, S.G.K.; Sahu, K.K. Normalization: A Preprocessing Stage. arXiv 2015, arXiv:1503.06462. [Google Scholar] [CrossRef]
- Meenal, R.; Michael, P.A.; Pamela, D.; Rajasekaran, E. Weather Prediction Using Random Forest Machine Learning Model. Indones. J. Electr. Eng. Comput. Sci. 2021, 22, 1208. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar] [CrossRef]
- Ibrahem Ahmed Osman, A.; Najah Ahmed, A.; Chow, M.F.; Feng Huang, Y.; El-Shafie, A. Extreme Gradient Boosting (Xgboost) Model to Predict the Groundwater Levels in Selangor Malaysia. Ain Shams Eng. J. 2021, 12, 1545–1556. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Goodacre, R. On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning. J. Anal. Test. 2018, 2, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Omary, Z.; Mtenzi, F. Machine Learning Approach to Identifying the Dataset Threshold for the Performance Estimators in Supervised Learning. Int. J. Infonomics 2010, 3, 314–325. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Wen, S.; Tang, C. A Strategy on Selecting Performance Metrics for Classifier Evaluation. Int. J. Mob. Comput. Multimed. Commun. 2014, 6, 20–35. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling Spatial Patterns of Fire Occurrence in Mediterranean Europe Using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
Source | Type | Geographical Area | Date Range | Sample Rate |
---|---|---|---|---|
ERA5 (Pressure and Single levels) | Gridded 0.25° | 19° E, 23° E, 23° N, 23° N | 2017–2020 | 3 h |
Satellite Data (GRIDSAT-B1) | Gridded 0.07° | 19° E, 23° E, 23° N, 23° N | 2017–2020 | 3 h |
Weather Station Data (N.O.A/meteo.gr) | Dataframe | Grevena, Kastoria, Kozani, Ptolemaida, Florina | 2017–2020 | 10 min/resampled to 3 h |
Model | MAE [mm] | RMSE [mm] |
---|---|---|
Random Forest | 0.4 | 0.6 |
XGBoost | 0.5 | 0.7 |
LSTM | 0.7 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyros, G.; Manolas, I.; Diamantaras, K.; Dafis, S.; Lagouvardos, K. A Machine Learning Approach for Rainfall Nowcasting Using Numerical Model and Observational Data. Environ. Sci. Proc. 2023, 26, 11. https://doi.org/10.3390/environsciproc2023026011
Kyros G, Manolas I, Diamantaras K, Dafis S, Lagouvardos K. A Machine Learning Approach for Rainfall Nowcasting Using Numerical Model and Observational Data. Environmental Sciences Proceedings. 2023; 26(1):11. https://doi.org/10.3390/environsciproc2023026011
Chicago/Turabian StyleKyros, Georgios, Ioannis Manolas, Konstantinos Diamantaras, Stavros Dafis, and Konstantinos Lagouvardos. 2023. "A Machine Learning Approach for Rainfall Nowcasting Using Numerical Model and Observational Data" Environmental Sciences Proceedings 26, no. 1: 11. https://doi.org/10.3390/environsciproc2023026011
APA StyleKyros, G., Manolas, I., Diamantaras, K., Dafis, S., & Lagouvardos, K. (2023). A Machine Learning Approach for Rainfall Nowcasting Using Numerical Model and Observational Data. Environmental Sciences Proceedings, 26(1), 11. https://doi.org/10.3390/environsciproc2023026011