The Development of a Dust Mineralogy Map from Satellite Retrievals and Implementation in WRF-Chem †
Abstract
:1. Introduction
2. Methodology and Results
2.1. Mineralogy from Multispectral (Sentinel 2A) and Hyperspectral (EMIT) Satellite Retrievals
2.2. Implementation of GMINER30 Database in WRF-Chem
3. Conclusions and Future Plans
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Copernicus Sentinel Data [2022]. Data Retrieved from Copernicus Open Access Hub, Processed by ESA. Available online: https://scihub.copernicus.eu/ (accessed on 25 March 2023).
- Green, R.O.; Mahowald, N.; Ung, C.; Thompson, D.R.; Bator, L.; Bennet, M.; Bernas, M.; Blackway, N.; Bradley, C.; Cha, J.; et al. The Earth Surface Mineral Dust Source Investigation: An Earth Science Imaging Spectroscopy Mission. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–15. [Google Scholar] [CrossRef]
- Nickovic, S.; Vukovic, A.; Vujadinovic, M.; Djurdjevic, V.; Pejanovic, G. Technical Note: High-resolution mineralogical database of dust-productive soils for atmospheric dust modeling. Atmos. Chem. Phys. 2012, 12, 845–855. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7: U.S. Geological Survey Data Series 1035; United States Geological Survey (USGS): Reston, VA, USA, 2017; 61p. [Google Scholar] [CrossRef]
- Jones, S.L.; Adams-Selin, R.; Hunt, E.D.; Creighton, G.A.; Cetola, J.D. Update on modifications to WRF-CHEM GOCART for fine-scale dust forecasting at AFWA. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA, 11–15 December 2012. [Google Scholar]
- Spyrou, C.; Solomos, S.; Bartsotas, N.S.; Douvis, K.C.; Nickovic, S. Development of a Dust Source Map for WRF-Chem Model Based on MODIS NDVI. Atmosphere 2022, 13, 868. [Google Scholar] [CrossRef]
- Gonçalves Ageitos, M.; Obiso, V.; Miller, R.L.; Jorba, O.; Klose, M.; Dawson, M.; Balkanski, Y.; Perlwitz, J.; Basart, S.; Di Tomaso, E.; et al. Modeling dust mineralogical composition: Sensitivity to soil mineralogy atlases and their expected climate impacts. EGUsphere 2023. preprint. [Google Scholar] [CrossRef]
Name | Chemical Formula | Ratio in Wavelengths (nm) | Band Ratio |
---|---|---|---|
Feldspar (plagioclase anorthite-albite) | Albite (NaAlSi3O8)—anorthite CaAl2Si2O8 | 1700/1300 | 178/124 |
Clays (illite, montmorillonite, kaolinite) | Al9FFeHK3MgO41Si14+8, Al2H2O12Si4, Al2Si2O 5(OH)4 | 1700/2200 | 178/245 |
Illite | (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] | 1700/2300 | 178/259 |
Montmorillonite (smectite) | (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O | 1700/2056 | 178/226 |
Kaolinite | Al2Si2O5(OH)4, or in oxide notation: Al2O3·2SiO2·2H2O | 1700/2160 | 178/240 |
Calcite | CaCO3 | 1700/2330 | 178/263 |
Hematite | Fe2O3 | 745.37/530 | 50/21 |
Gypsum | CaSO4·2H2O | 1670/1751.8 | 174/185 |
Phosphorus (apatite) | Ca5(PO4)3(F,Cl,OH) | 768/797.89 | 53/57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solomos, S.; Spyrou, C.; Bartsotas, N.S.; Sykioti, O.; Amiridis, V.; Gkikas, A.; Marinou, E.; Katsafados, P.; Tsarpalis, K.; Pejanovic, G.; et al. The Development of a Dust Mineralogy Map from Satellite Retrievals and Implementation in WRF-Chem. Environ. Sci. Proc. 2023, 26, 54. https://doi.org/10.3390/environsciproc2023026054
Solomos S, Spyrou C, Bartsotas NS, Sykioti O, Amiridis V, Gkikas A, Marinou E, Katsafados P, Tsarpalis K, Pejanovic G, et al. The Development of a Dust Mineralogy Map from Satellite Retrievals and Implementation in WRF-Chem. Environmental Sciences Proceedings. 2023; 26(1):54. https://doi.org/10.3390/environsciproc2023026054
Chicago/Turabian StyleSolomos, Stavros, Christos Spyrou, Nikolaos S. Bartsotas, Olga Sykioti, Vassilis Amiridis, Antonios Gkikas, Eleni Marinou, Petros Katsafados, Konstantinos Tsarpalis, Goran Pejanovic, and et al. 2023. "The Development of a Dust Mineralogy Map from Satellite Retrievals and Implementation in WRF-Chem" Environmental Sciences Proceedings 26, no. 1: 54. https://doi.org/10.3390/environsciproc2023026054
APA StyleSolomos, S., Spyrou, C., Bartsotas, N. S., Sykioti, O., Amiridis, V., Gkikas, A., Marinou, E., Katsafados, P., Tsarpalis, K., Pejanovic, G., Cvetkovic, B., Nickovic, S., Kalivitis, N., Kanakidou, M., Mihalopoulos, N., & Zerefos, C. (2023). The Development of a Dust Mineralogy Map from Satellite Retrievals and Implementation in WRF-Chem. Environmental Sciences Proceedings, 26(1), 54. https://doi.org/10.3390/environsciproc2023026054