Return Periods in Assessing Climate Change Risks: Uses and Misuses †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Meteorology Society Glossary. Available online: https://glossary.ametsoc.org/wiki/Return_period (accessed on 5 December 2022).
- Deraman, W.H.A.W.; Mutalib, N.J.A.; Mukhtar, N.Z. Determination of return period for flood frequency analysis using normal and related distributions. J. Phys. Conf. Ser. 2017, 890, 012162. [Google Scholar] [CrossRef]
- Rakhecha, P.R.; Singh, V.P. Applied Hydrometeorology; Springer: Heidelberg, Germany, 2009. [Google Scholar]
- Baaqeel, A.; Quliti, S.; Daghreri, Y.; Hajlaa, S.; Yami, H. Estimating the Frequency, Magnitude and Recurrence of Extreme Earthquakes in Gulf of Aqaba, Northern Red Sea. Open J. Earthq. Res. 2016, 5, 135–152. [Google Scholar] [CrossRef]
- Kulikov, E.; Rabinovich, A.; Thomson, R. Estimation of Tsunami Risk for the Coasts of Peru and Northern Chile. Nat. Hazards 2005, 35, 185–209. [Google Scholar] [CrossRef]
- Dosio, A.; Mentaschi, L.; Fischer, E.; Wyser, K. Extreme heat waves under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 054006. [Google Scholar] [CrossRef]
- Wehner, M.F. Characterization of long period return values of extreme daily temperature and precipitation in the CMIP6 models: Part 2, projections of future change. Weather. Clim. Extrem. 2020, 30, 100284. [Google Scholar] [CrossRef]
- Otto, F.E.L.; Philip, S.; Kew, S.; Li, S.; King, A.; Cullen, H. Attributing high-impact extreme events across timescales—A case study of four different types of events. Clim. Change 2018, 149, 399–412. [Google Scholar] [CrossRef]
- Kumari, S.; Haustein, K.; Javid, H.; Burton, C.; Allen, M.R.; PAltan, H.; Dadson, S.; Otto, F.E.L. Return period of extreme rainfall substantially decreases under 1.5 °C and 2.0 °C warming: A case study for Uttarakhand, India Environ. Res. Lett. 2019, 14, 044033. [Google Scholar] [CrossRef]
- Pandey, S.; Mishra, B.K. Spatial and Temporal Analysis of Extreme Precipitation under Climate Change over Gandaki Province, Nepal. Architecture 2022, 2, 724–759. [Google Scholar] [CrossRef]
- Lin, N.; Marsooli, R.; Colle, B.A. Storm surge return levels induced by mid-to-late-twenty-first-century extratropical cyclones in the Northeastern United States. Clim. Change 2019, 154, 143–158. [Google Scholar] [CrossRef]
- Dullaart, J.C.M.; Muis, S.; Bloemendaal, N.; Chertova, M.V.; Couasnon, A.; Aerts, J.C.J.H. Accounting for tropical cyclones more than doubles the global population exposed to low-probability coastal flooding. Commun. Earth Environ. 2021, 2, 135. [Google Scholar] [CrossRef]
- Tsunetaka, H. Comparison of the return period for landslide-triggering rainfall events in Japan based on standardization of the rainfall period. Earth Surf. Process. Landf. 2021, 46, 2984–2998. [Google Scholar] [CrossRef]
- Volpi, E.; Fiori, A.; Grimaldi, S.; Lombardo, F.; Koutsoyiannis, D. Save hydrological observations! Return period estimation without data decimation. J. Hydrol. 2019, 571, 782–792. [Google Scholar] [CrossRef]
- Li, S.H. Design Wind Speed for Buildings and Facilities With Non-Standard Design Life in Canadian Wind Climates. Front. Built Environ. 2022, 8, 829533. [Google Scholar] [CrossRef]
- Pizarro, A.; Manfreda, S.; Tubaldi, E. The Science behind Scour at Bridge Foundations: A Review. Water 2020, 12, 374. [Google Scholar] [CrossRef]
- Meyer, M.; Flood, M.; Keller, J.; Lennon, J.; McVoy, G.; Dorney, C.; Leonard, K.; Hyman, R.; Smith, J. The Transportation Research Board (TRB) National Cooperative Highway Research Program (NCHRP) Report 750: Strategic Issues Facing Transportation, Volume 2: Climate Change, Extreme Weather Events, and the Highway System: Practitioner’s Guide and Research Report; National Academy of Sciences: Washington, DC, USA, 2014. [Google Scholar]
- Tsompanakis, Y. Earthquake Return Period and Its Incorporation into Seismic Actions. In Encyclopedia of Earthquake Engineering; Beer, M., Kougioumtzoglou, I.A., Patelli, E., Au, S.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Serinaldi, F. Dismissing return periods! Stoch. Environ. Res. Risk Assess. 2014, 29, 1179–1189. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Jetten, V.; Alkema, D.; Brussel, M. Development of the Caribbean Handbook on Disaster Risk Information Management. 2014. Available online: https://www.cdema.org/virtuallibrary/index.php/charim-hbook/methodology/2-analysing-hazards/2-3-rainfall-analysis (accessed on 1 December 2020). [CrossRef]
- Vangelis, H.; Zotou, I.; Kourtis, I.M.; Bellos, V.; Tsihrintzis, V.A. Relationship of Rainfall and Flood Return Periods through Hydrologic and Hydraulic Modeling. Water 2022, 14, 3618. [Google Scholar]
- Viglione, A.; Blöschl, G. On the role of storm duration in the mapping of rainfall to flood return periods. Hydrol. Earth Syst. Sci. 2009, 13, 205–216. [Google Scholar] [CrossRef]
- Osei, M.A.; Amekudzi, L.K.; Omari-Sasu, A.Y.; Yamba, E.I.; Quansah, E.; Aryee, J.N.A.; Preko, K. Estimation of the return periods of maxima rainfall and floods at the Pra River Catchment, Ghana, West Africa using the Gumbel extreme value theory. Heliyon 2021, 7, e06980. [Google Scholar] [CrossRef]
- Paulik, R.; Stephens, S.; Wild, A.; Wadhwa, S.; Bell, R.G. Cumulative building exposure to extreme sea level flooding in coastal urban areas. Int. J. Disaster Risk Reduct. 2021, 66, 102612. [Google Scholar] [CrossRef]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Muis, S.; Nicholls, R.J.; Lincke, D.; Hinkel, J. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 2020, 10, 11629. [Google Scholar] [CrossRef]
- Marcos, M.; Rohmer, J.; Vousdoukas, M.I.; Mentaschi, L.; Le Cozannet, G.; Amores, A. Increased extreme coastal water levels due to the combined action of storm surges and wind waves. Geophys. Res. Lett. 2019, 46, 4356–4364. [Google Scholar] [CrossRef]
- Ezer, T. Sea level acceleration and variability in the Chesapeake Bay: Past trends, future projections, and spatial variations within the Bay. Ocean. Dyn. 2023, 73, 23–34. [Google Scholar] [CrossRef]
- Petroliagkis, T.I. Estimations of statistical dependence as joint return period modulator of compound events–Part 1: Storm surge and wave height. Nat. Hazards Earth Syst. Sci. 2018, 18, 1937–1955. [Google Scholar] [CrossRef]
- van der Linden, E.C.; Le Bars, D.; Lambert, E.; Drijfhout, S. Antarctic contribution to future sea level from ice shelf basal melt as constrained by ice discharge observations. Cryosphere 2023, 17, 79–103. [Google Scholar] [CrossRef]
- Cazenave, A.; Palanisamy, H.; Ablain, M. Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges? Adv. Space Res. 2018, 62, 1639–1653. [Google Scholar]
- Grant, K.; Rohling, E.; Ramsey, C.; Cheng, H.; Edwards, R.L.; Florindo, F.; Heslop, D.; Marra, F.; Roberts, A.P.; Tamisiea, M.E.; et al. Sea-level variability over five glacial cycles. Nat. Commun. 2014, 5, 5076. [Google Scholar] [CrossRef]
- Taherkhani, M.; Vitousek, S.; Barnard, P.L.; Frazer, N.; Anderson, T.R.; Fletcher, C.H. Sea-level rise exponentially increases coastal flood frequency. Sci. Rep. 2020, 10, 6466. [Google Scholar] [CrossRef]
- Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level (accessed on 2 February 2023).
- Donoghue, J.F. Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future. Clim. Change 2011, 107, 17–33. [Google Scholar] [CrossRef]
- Van Campenhout, J.; Houbrechts, G.; Peeters, A.; Petit, F. Return Period of Characteristic Discharges from the Comparison between Partial Duration and Annual Series, Application to the Walloon Rivers (Belgium). Water 2020, 12, 792. [Google Scholar] [CrossRef]
- Handmer, J.; Honda, Y.; Kundzewicz, Z.W.; Arnell, N.; Benito, G.; Hatfield, J.; Mohamed, I.F.; Peduzzi, P.; Wu, S.; Sherstyukov, B.; et al. Changes in impacts of climate extremes: Human systems and ecosystems. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., et al., Eds.; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 231–290. [Google Scholar]
- Jevrejeva, S.; Frederikse, T.; Kopp, R.E.; Le Cozannet, G.; Jackson, L.P.; van de Wal, R.S.W. Probabilistic Sea Level Projections at the Coast by 2100. Surv. Geophys. 2019, 40, 1673–1696. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel for Climate Change (IPCC), 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Mastrandrea, M.D.; Field, C.B.; Stocker, T.F.; Edenhofer, O.; Ebi, K.L.; Frame, D.J.; Held, H.; Kriegler, E.; Mach, K.J.; Matschoss, P.R.; et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. In Proceedings of the IPCC Cross-Working Group Meeting on Consistent Treatment of Uncertainties, Jasper Ridge, CA, USA, 6–7 July 2010. [Google Scholar]
- Kandlikar, M.; Risbey, J.; Dessai, S. Representing and communicating deep uncertainty in climate-change assessments. Comptes Rendus Geosci. 2005, 337, 443–455. [Google Scholar] [CrossRef]
Years When the Magnitude of Climate Hazard X Exceeded Level x, during 1975–2018 | 1980 | 1981 | 1982 | 1998 | 2001 | 2007 | 2012 | 2017 | Average |
---|---|---|---|---|---|---|---|---|---|
Return Period (T) | 4 years (1966–1970) | 1 year (1970–1971) | 1 year (1971–1972) | 16 years (1973–1988) | 3 years (1989–1991) | 6 years (1991–1997) | 5 years (1997–2002) | 5 years (2002–2007) | 5.1 years |
Return Period (T) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10,000 | 2000 | 1000 | 200 | 100 | 50 | 20 | 10 | 5 | 3 | 2 | 1.5 | 1 | |
Probability (%) | 0.01 | 0.05 | 0.1 | 0.5 | 1 | 2 | 5 | 10 | 20 | 33 | 50 | 66 | 100 |
Qualitative Assessment of Likelihood | Associated Likelihood | Degree of Confidence | Probability Scale |
---|---|---|---|
Virtually certain/ Extremely likely | >99%/>95% | High confidence | 10 |
Very likely | >90% | High confidence | 9 |
Likely | >66% | High confidence/Medium confidence | 8/7 |
About as likely as not | 33–66% | High confidence/Medium confidence | 6/5 |
Unlikely | <33% | Medium Confidence/High confidence | 4/3 |
Very unlikely | <10% | High Confidence | 2 |
Extremely unlikely/Exceptionally Unlikelly | <5%/<1% | High Confidence | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koliokosta, E. Return Periods in Assessing Climate Change Risks: Uses and Misuses. Environ. Sci. Proc. 2023, 26, 75. https://doi.org/10.3390/environsciproc2023026075
Koliokosta E. Return Periods in Assessing Climate Change Risks: Uses and Misuses. Environmental Sciences Proceedings. 2023; 26(1):75. https://doi.org/10.3390/environsciproc2023026075
Chicago/Turabian StyleKoliokosta, Efthymia. 2023. "Return Periods in Assessing Climate Change Risks: Uses and Misuses" Environmental Sciences Proceedings 26, no. 1: 75. https://doi.org/10.3390/environsciproc2023026075
APA StyleKoliokosta, E. (2023). Return Periods in Assessing Climate Change Risks: Uses and Misuses. Environmental Sciences Proceedings, 26(1), 75. https://doi.org/10.3390/environsciproc2023026075