Effect of Dust Events on Photovoltaics Electricity Production in the European and North African Regions †
Abstract
:1. Introduction
- -
- Quantifying the impact of total aerosol and dust on SSR in the affected regions.
- -
- Estimating the Financial loss in the energy output of the PV plants located over the entire affected region.
2. Site, Materials, and Methods
3. Results
3.1. Dust Storm Identification and AOD Variations
3.2. Solar Radiation Variation
3.3. Estimated Solar Radiation and Financial PV Production Loss
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kosmopoulos, P.G.; Kazadzis, S.; El-Askary, H.; Taylor, M.; Gkikas, A.; Proestakis, E.; Kontoes, C.; El-Khayat, M.M. Earth-Observation-Based Estimation and Forecasting of Particulate Matter Impact on Solar Energy in Egypt. Remote Sens. 2018, 10, 1870. [Google Scholar] [CrossRef]
- Masoom, A.; Kosmopoulos, P.; Bansal, A.; Gkikas, A.; Proestakis, E.; Kazadzis, S.; Amiridis, V. Forecasting Dust Impact on Solar Energy Using Remote Sensing and Modeling Techniques. Sol. Energy 2021, 228, 317–332. [Google Scholar] [CrossRef]
- IEA. Renewables 2020, IEA, Paris. 2020. Available online: https://www.iea.org/reports/renewables-2020 (accessed on 10 November 2022).
- Aicardi, D.; Musé, P.; Alonso-Suárez, R. A Comparison of Satellite Cloud Motion Vectors Techniques to Forecast Intra-Day Hourly Solar Global Horizontal Irradiation. Sol. Energy 2022, 233, 46–60. [Google Scholar] [CrossRef]
- Masoom, A.; Kosmopoulos, P.; Kashyap, Y.; Kumar, S.; Bansal, A. Rooftop Photovoltaic Energy Production Management in India Using Earth-Observation Data and Modeling Techniques. Remote Sens. 2020, 12, 1921. [Google Scholar] [CrossRef]
- Kosmopoulos, P.G.; Kazadzis, S.; Taylor, M.; Athanasopoulou, E.; Speyer, O.; Raptis, P.I.; Marinou, E.; Proestakis, E.; Solomos, S.; Gerasopoulos, E.; et al. Dust Impact on Surface Solar Irradiance Assessed with Model Simulations, Satellite Observations and Ground-Based Measurements. Atmos. Meas. Tech. 2017, 10, 2435–2453. [Google Scholar] [CrossRef]
- Schroedter-Homscheidt, M.; Azam, F.; Betcke, J.; Hanrieder, N.; Lefèvre, M.; Saboret, L. Surface Solar Irradiation Retrieval from MSG/SEVIRI Based on APOLLO Next Generation and HELIOSAT-4 Methods. Energy Meteorol. 2022, 31, 455–476. [Google Scholar] [CrossRef]
- Gschwind, B.; Wald, L.; Blanc, P.; Schroedter-homscheidt, M.; Arola, A. Improving the McClear Model Estimating the Downwelling Solar Radiation at Ground Level in Cloud-Free Conditions. Energy Meteorol. 2019, 28, 147–163. [Google Scholar] [CrossRef]
- IRENA. Renewable Capacity Statistics 2023; IRENA: Abu Dhabi, United Arab Emirates, 2023. [Google Scholar]
- REN21. Renewables 2023 Global Status Report Collection, Renewables in Energy Supply; REN21 Secretariat: Paris, France, 2023; ISBN 978-3-948393-08-3. [Google Scholar]
- Kumar, A.; Kosmopoulos, P.; Kashyap, Y.; Gautam, R. Rooftop Photovoltaic Energy Production Estimations in India Using Remotely Sensed Data and Methods. Remote Sens. 2023, 15, 3051. [Google Scholar] [CrossRef]
Sites | GHI Dust | GHI Normal | GHI Loss |
---|---|---|---|
Tripoli (32.8° N, 13.2° E, Libya) | 4.30 * | 5.20 * | 17.18% |
Athens (37.9° N, 23.7° E, Greece) | 3.11 | 4.98 | 37.18% |
Izmir (38.4° N, 27.1° E, West Turkey) | 1.97 | 4.80 | 58.83% |
Heraklion (35.3° N, 25.1° E, Crete, southern Greece) | 3.14 | 4.81 | 34.54% |
Sochi (43.60° N, 39.7° E, Russia) | 1.84 | 3.86 | 52.20% |
Cairo (30.1° N, 31.2° E, Egypt) | 4.89 | 5.51 | 11.08% |
Sites | GHI Dust | GHI Normal | GHI Loss |
---|---|---|---|
Tripoli (32.8° N, 13.2° E, Libya) | 3.70 * | 4.91 * | 26.62% |
Cagliari (39.2° N,9.1° E, Italy) | 2.54 | 3.66 | 30.48% |
Barcelona (41.3° N, 2.1° E, Spain) | 1.12 | 4.29 | 73.82% |
Hamburg (53.5° N, 9.9°E, Germany) | 1.75 | 2.63 | 33.38% |
Copenhagen (55.7° N, 12.5° E, Denmark) | 1.29 | 2.93 | 55.71% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sethi, D.; Kosmopoulos, P.G. Effect of Dust Events on Photovoltaics Electricity Production in the European and North African Regions. Environ. Sci. Proc. 2023, 26, 8. https://doi.org/10.3390/environsciproc2023026008
Sethi D, Kosmopoulos PG. Effect of Dust Events on Photovoltaics Electricity Production in the European and North African Regions. Environmental Sciences Proceedings. 2023; 26(1):8. https://doi.org/10.3390/environsciproc2023026008
Chicago/Turabian StyleSethi, Davender, and Panagiotis G. Kosmopoulos. 2023. "Effect of Dust Events on Photovoltaics Electricity Production in the European and North African Regions" Environmental Sciences Proceedings 26, no. 1: 8. https://doi.org/10.3390/environsciproc2023026008
APA StyleSethi, D., & Kosmopoulos, P. G. (2023). Effect of Dust Events on Photovoltaics Electricity Production in the European and North African Regions. Environmental Sciences Proceedings, 26(1), 8. https://doi.org/10.3390/environsciproc2023026008