Verification of the Short-Term Forecast of the Wind Speed for the Gibara II Wind Farm according to the Prevailing Synoptic Situation Types †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Used
2.2. Immediate Forecast System (SisPI)
2.3. Used Metrics
2.4. Methodology
3. Discussion of Results
3.1. Analysis of Wind Speed Behavior in Gibara during the Period from May 2020 to April 2021
3.2. Forecast Behavior of Wind Speed in the Period from May 2020 to April 2021 via MAE Analysis
3.3. Analysis of the Association between MAE and subTSS in the Rainy Period (RP) and Less Rainy Period (LRP)
3.3.1. Rainy Period (RP)
3.3.2. Less Rainy Period (LRP)
3.4. Analysis of the Association between Regular and Bad MAE Values and subTSS in the Rainy Period (RP) and Less Rainy Period (LRP)
3.4.1. RP Analysis
3.4.2. LRP Analysis
3.5. Wind Speed Forecast Behavior during the Period May 2020–April 2021 via RMSE Analysis
3.6. Analysis of the Association between RMSE and subTSS in the Rainy Period (RP) and Dry Period (DP)
3.6.1. Rainy Period (RP)
3.6.2. Dry Period (DP)
3.7. Analysis of the Association between Bad and Regular RMSE Values and subTSS in the Rainy Period (RP) and Dry Period (DP)
3.7.1. Analysis of RP
3.7.2. Analysis of DP
3.8. Behavior of Wind Speed Forecast in the Period from May 2020 to April 2021 via BIAS Analysis
3.9. Behavior of Wind Speed Forecast in the Period from May 2020 to April 2021 via R Analysis
4. Conclusions
- It was obtained that, in the case of MAE, 63.4% of the wind speed forecasts were classified as very good or good, while 36.6% were classified as regular and bad, which reflects the good representation of most subTSS by SisPI. However, for RMSE, it was obtained that 42% of the values fell between very good and good, and 58% of the forecasts were classified as regular and bad, which was not as favorable.
- The MAE analysis of the cases classified as regular and bad for both seasonal periods yielded well-defined results, highlighting subtype 3 (unperturbed extended anticyclonic flow), which represented over 50% of the cases in PLL and just over 35% in PPLL, reflecting the improvement by SisPI in forecasting this subtype in the low rainfall period. In the case of RMSE analysis, it was obtained that this subtype had a prevalence of over 60% in PLL and less than 35% in PPLL, showing a lower presence compared to PLL.
- Subtype 19 was the system that achieved the worst results, as despite its low frequency in the study year, over 50% of the days it was present, the wind speed forecast was classified as regular and bad.
- In the case of BIAS analysis, both parks showed favorable behavior, with overestimated values between 0 and 1.2 m/s. On the other hand, the R analysis also showed good behavior, between 0.4 and 0.8 m/s.
5. Recommendations
- Sharing the results of this research with SisPI developers, as well as with weather forecasters in general.
- Further investigating the relationship between TSS and forecast errors via new experiments.
- Incorporating the underlying subTSS into the wind speed forecast.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GWEC: Global Wind Energy Council. Global Wind Report. 2023. Available online: https://gwec.net/globalwindreport2023/ (accessed on 25 August 2023).
- Ministerio de Energía y Minas de Cuba. Eólica. 2021. Available online: https://www.minem.gob.cu/es/actividades/energias-renovables-y-eficiencia-energetica/eólica (accessed on 25 August 2023).
- Giebel, G.; Draxl, C.; Brownsword, R.; Kariniotakis, G.; Denhard, M. The State-of-the-Art in Short-Term Prediction of Wind Power: A Literature Overview, 2nd ed.; ANEMOS.plus: Oldenburg, Germany, 2011. [Google Scholar] [CrossRef]
- Senkal, S.; Ozgonenel, O. Performance Analysis of Artificial and Wavelet Neural Networks for Short Term Wind Speed Prediction. In Proceedings of the 8th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2013. [Google Scholar] [CrossRef]
- Sapronova, A.; Meissner, C.; Mana, M. Short-Time Ahead Wind Power Production Forecast. J. Phys. Conf. Ser. 2016, 749, 012006. [Google Scholar] [CrossRef]
- Li, Q.; Hammerschmidt, C.; Pellegrino, G.; Verwer, S. Short-term Time Series Forecasting with Regression Automata. In Proceedings of the KDD ’16, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Xie, A.; Yang, H.; Chen, J.; Sheng, L.; Zhang, Q. A short-term wind speed forecasting model based on a multi-variable long short-term memory network. Atmosphere 2021, 12, 651. [Google Scholar] [CrossRef]
- Li, Z.; Luo, X.; Liu, M.; Cao, X.; Du, S.; Sun, H. Short-term prediction of the power of a new wind turbine based on IAO-LSTM. Energy Rep. 2022, 8, 9025–9037. [Google Scholar] [CrossRef]
- Lv, S.; Wang, L.; Wang, S. A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting. Energies 2023, 16, 1841. [Google Scholar] [CrossRef]
- Saini, V.K.; Kumar, R.; Al-Sumaiti, A.S.; Sujil, A.; Heydarian-Forushani, E. Learning based short-term wind speed forecasting models for smart grid applications: An extensive review and case study. Electr. Power Syst. Res. 2023, 222, 109502. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Shao, L.; Liu, H.; Ren, L.; Zhu, L. Short-Term Wind Power Prediction by an Extreme Learning Machine Based on an Improved Hunter–Prey Optimization Algorithm. Sustainability 2023, 15, 991. [Google Scholar] [CrossRef]
- Roque, A.; Borrajero, I.; Hernández, A.; Sierra, M. Short-Term Energy Forecast for the Gibara I and Los Canarreos Wind Farms. In Technical Report; P211LH003–004; Instituto de Meteorología de Cuba: Havana, Cuba, 2015. [Google Scholar]
- Roque, A.; Sierra, M.; Borrajero, I.; Ferrer, A. Short-Term Wind Forecast in Meteorological Reference Towers for the Cuban Wind Program. In Technical Report; Instituto de Meteorología de Cuba: Havana, Cuba, 2015. [Google Scholar]
- Roque, A.; Hernández, A.; Borrajero, I.; Sierra, M.; Valdéz, A. Pronóstico de viento a corto plazo utilizando el modelo WRF en tres regiones de interés para el Programa Eólico Cubano. Rev. Cuba. Meteorol. 2016, 22, 164–187. [Google Scholar]
- Martínez, B.; Roque, A. Pronóstico energético a muy corto plazo para el Parque Eólico Gibara I utilizando un modelo autorregresivo. Rev. Cuba. Meteorol. 2019, 25, 168–178. [Google Scholar]
- Fuentes, A.; Sierra, M.; Roque, A. LSTM Model for Wind Speed and Power Generation Nowcasting. Environ. Sci. Proc. 2022, 13, 30. [Google Scholar]
- Sierra, M.; Fuentes, A.; Roque, A.; Rosquete, A.; Patiño, D. Comparación del pronóstico de Viento Qenerado por el Modelo WRF y dos Modelos LSTM. Rev. Cuba. Meteorol. 2023. Available online: https://cu-id.com/2377/v29n3e04 (accessed on 25 August 2023).
- Roque, A.; Ferrer, A.; Sierra, M.; Borrajero, I. Pronóstico numérico a corto plazo de la rapidez del viento para los parques eólicos de Gibara I y II. Rev. Cuba. Meteorol. 2022, 28, 4–6. [Google Scholar]
- Patiño, D.; Roque, A.; Soler, E. EMA del pronóstico a corto plazo de la rapidez del viento para el parque eólico Gibara I según el TSS influyente. Rev. Cuba. Meteorol. 2023, 29, 3–8. [Google Scholar]
- Soler, E.; Lecha, L.; Sánchez, L.; Naranjo, Y. Catálogo de los Tipos de Situaciones Sinópticas que Influyen Sobre Cuba; Centro Meteorológico de la Isla de la Juventud: Nueva Gerona, Cuba, 2020. [Google Scholar] [CrossRef]
- Sierra, M.; Borrajero, I.; Ferrer, A.; Morfá, Y.; Morejón, Y.; Hinojosa, M. Estudios de Sensibilidad del SisPI a Cambios de la PBL, la Cantidad de Niveles Verticales y, las Parametrizaciones de Microfísica y Cúmulos, a Muy Alta Resolución; Informe de Resultado Instituto de Meteorlogía: La Habana, Cuba, 2017; Available online: https://www.researchgate.net/publication/ (accessed on 18 May 2023).
- Carrasco, M.; Roque, A.; Sánchez, O. Local Breeze Effects on the Wind Energy Generation in the Northern Coast of Cuba. Wind. Eng. 2011, 35, 635–648. [Google Scholar] [CrossRef]
- Roque, A.; Carrasco, M.; Reyes, P. Características del perfil vertical del viento en la capa superficial atmosférica sobre Cuba, atendiendo a la estratificación térmica de la atmósfera. Cienc. Tierra Espac. 2015, 16, 189–200. [Google Scholar]
- Martínez, B.; Roque, A. Disminución de la rapidez del viento en la capa superficial atmosférica. Su influencia en el aprovechamiento eólico. Rev. Cuba. Meteorol. 2015, 21, 49–61. [Google Scholar]
- Perdigón, J.; Rodríguez, G. Condiciones Sinópticas más Favorables Para el Aprovechamiento de la Energía Eólica en Cuba. Período Poco Lluvioso. Rev. Cuba. Meteorol. 2012. Available online: http://rcm.insmet.cu/index.php/rcm/article/view/19 (accessed on 25 August 2023).
- Paula, J.; Sierra, M.; González, P. Analysis of SisPI Performance to Represent the North Atlantic Subtropical Anticyclone. Environ. Sci. Proc. 2022, 19, 40. [Google Scholar] [CrossRef]
No | SubTSS |
---|---|
1 | Subtropical anticyclone with first quadrant flow |
2 | Subtropical anticyclone with second quadrant flow |
3 | Extended undisturbed anticyclonic flow |
4 | Extended flow in the divergent sector of waves |
5 | Weak barometric gradient |
6 | Influence of a tropical cyclone |
7 | East waves and troughs |
8 | West convergence and troughs |
13 | Classic cold front |
14 | Reverse cold front |
17 | Migratory continental anticyclone |
18 | Migratory anticyclone in the process of transformation |
19 | Migratory anticyclone in an advanced stage of transformation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avila, D.M.P.; Rodríguez, A.R.; Torres, E.S.; Rodríguez, A.S.; Lino, T.G.; Bolaños, R.O. Verification of the Short-Term Forecast of the Wind Speed for the Gibara II Wind Farm according to the Prevailing Synoptic Situation Types. Environ. Sci. Proc. 2023, 27, 25. https://doi.org/10.3390/ecas2023-15160
Avila DMP, Rodríguez AR, Torres ES, Rodríguez AS, Lino TG, Bolaños RO. Verification of the Short-Term Forecast of the Wind Speed for the Gibara II Wind Farm according to the Prevailing Synoptic Situation Types. Environmental Sciences Proceedings. 2023; 27(1):25. https://doi.org/10.3390/ecas2023-15160
Chicago/Turabian StyleAvila, Dayanis María Patiño, Alfredo Roque Rodríguez, Edgardo Soler Torres, Arlén Sánchez Rodríguez, Thalía Gómez Lino, and Rosalba Olivera Bolaños. 2023. "Verification of the Short-Term Forecast of the Wind Speed for the Gibara II Wind Farm according to the Prevailing Synoptic Situation Types" Environmental Sciences Proceedings 27, no. 1: 25. https://doi.org/10.3390/ecas2023-15160
APA StyleAvila, D. M. P., Rodríguez, A. R., Torres, E. S., Rodríguez, A. S., Lino, T. G., & Bolaños, R. O. (2023). Verification of the Short-Term Forecast of the Wind Speed for the Gibara II Wind Farm according to the Prevailing Synoptic Situation Types. Environmental Sciences Proceedings, 27(1), 25. https://doi.org/10.3390/ecas2023-15160