3.1. Spatial Distribution of Soil Moisture Content
The average monthly distribution of soil moisture content in the layer of 0–10 cm underground has the following features (
Table 1). A clear annual course of W is observed in all agroclimatic zones with the maximum in February and the minimum in August. In general, the lowest average values of soil moisture content during the year are observed in the Western Steppe (15–31 kg/m
2), and the maximum values are in the Carpathian region (24–38 kg/m
2). In all zones, the intensive increase of soil moisture content starting from November, when W increases by 4–5 kg/m
2 per month to the maximum in February. In the spring months starting from March, the soil moisture content decreases by an average of 2–3 kg/m
2 per month until the onset of minimum values in late summer.
The spatial distribution of soil moisture content has a zonal pattern in Ukraine in winter and spring months. The maximum values of W in January and April are concentrated in the north-eastern regions of Ukraine as well as in the Carpathian region. In these areas in January the soil moisture content exceeds 40 kg/m2, and in April it decreases to 28–34 kg/m2. The lowest values of soil moisture in January are in the southern regions, where they range from 15–29 kg/m2. In April, the field of soil moisture content becomes quite homogeneous throughout the country compared to winter months, with a general decrease in soil moisture content.
In summer and autumn, the spatial distribution of soil moisture content throughout the country loses zonation. The highest values of moisture content are observed in the western regions and north-west of the country. Soil moisture content in these areas ranges from 21–30 kg/m2. The central, eastern, and southern regions are in relatively homogeneous conditions with lower soil moisture content comparing to the western regions. The lowest W values were observed in the Black Sea Steppe, where soil moisture content does not exceed 17–18 kg/m2. From summer to autumn W increases 1.0–1.5 kg/m2 across the country, and that in autumn the horizontal gradients of W decrease compared to summer, and then increase again in winter.
3.2. Time Course of the SMAI
The time series of SMAI were analyzed to assess the dynamics of soil moisture anomalies during the study period 2000–2019 in agroclimatic zones of Ukraine.
Figure 2a–d demonstrates the time series of the SMAI index for the central months of the seasons, but we will describe the features of all months.
During the winter, the SMAI had significant year-on-year fluctuations in all agroclimatic zones, without any tendency predominantly of a certain anomaly (positive or negative). In December, increased soil moisture content was observed almost every two years, with the largest positive anomalies in the Steppe, Polesie, and the Carpathian region. December 2004, 2005, and 2010 were the wettest. For all zones prolonged lack of soil moisture was observed in December 2011–2015 as well as in 2006 and 2019. In January, the time course of the SMAI index is varied in zones both in time and in the amplitude of index fluctuations. In almost all zones, positive anomalies were fixed in January 2002–2004 and 2010–2013. In January 2005–2009 the dry conditions prevailed. From 2013 to 2018 in January the SMAI index had frequent fluctuations, and that in the Steppe areas positive anomalies were dominated, and in other regions the negative ones. In general, a significant deficit of soil moisture content was observed throughout the country in the winter of 2007–2009. In January-February, moisture deficits were formed in most regions in 2015, 2016, and 2018.
In March, the time series of the SMAI is quite homogeneous between agroclimatic zones, which indicates the spatial homogeneity of humidification conditions in this month. Long periods of high soil moisture were observed in March 2003–2006 and 2010–2013. Insufficient soil moisture content was formed in March 2007–2009, 2014–2017. In general, in the last decade there was a tendency of predominance of negative anomalies of soil moisture content in March. In April, there were generally small year-on-year fluctuations of the SMAI index relative to the neutral state [−1; +1] in all agroclimatic zones. There were two dry periods in April 2007 and 2009, and a period of high soil moisture content in April 2013 in all zones except the Steppe. In May, the time course of the SMAI index showed sharp interannual fluctuations, with prevailing of periods with positive values, especially in the second half of the study period, so, there is a tendency to increase soil moisture content in late spring. The strong deficit of soil moisture was observed in all agroclimatic zones in May 2000, 2002–2003, 2007, 2018.
During the summer, in all months there was a tendency to decrease the interannual variation of the SMAI index and the transition to a predominance of negative values in the late summer. In June, the largest deficits of soil moisture were observed in 2000, 2003, 2007. In 2012–2013 in the Steppe and Forest-Steppe there was a deficit of soil moisture, and in Polesie and the Carpathians, on the contrary, there was a comparable positive anomaly. From 2015 to 2019 (except 2016), negative values of the SMAI index were observed in almost all regions. In July, negative anomalies of soil moisture content were observed in all zones in 2002, 2007, and 2012–2017. At the same time, from the beginning of the study period until 2012, months with positive anomalies prevailed. In August, the interannual distribution of the SMAI index is most homogeneous compared to other summer months. In the period from 2001 to 2006, positive anomalies of soil moisture content prevailed in almost all zones. After 2007, mostly neutral soil moisture conditions were observed, and August 2015 was the driest.
In the autumn months, the time course of the SMAI index had a general tendency from mostly positive values in the first half of the study period to neutral or negative values in the second half. In September, there were sharp interannual fluctuations in the SMAI index with an interval of 1–2 years in almost all areas from positive to negative anomalies. The wettest months were in September 2001, 2004, 2010, and 2013. The dry period with predominant negative anomalies in September was observed from 2014 to 2019. In October 2001–2004, the largest positive anomalies of soil moisture content were observed. During 2005–2012, the time course of the SMAI index fluctuations was around the neutral state. At the end of the period, the frequency of negative anomalies of soil moisture increased, and driest October was observed in 2014–2015 and 2018–2019. In November, in the period 2001–2010 positive SMAI anomalies prevailed with a gradual decrease in the amplitude. In 2011, the largest negative anomaly of soil moisture content was observed in all zones, which coincided with the intense atmospheric autumn drought 2011 in Ukraine [
11]. Large negative anomalies of the SMAI index were also recorded in different zones in November 2000, 2014, 2018–2019.
3.3. Relationship of the SMAI with Parameters of the Atmospheric Circulation
Analysis of the correlation coefficients (r) between the average monthly values of the SMAI index and the NAO index showed that in general, the statistical relationship between these parameters is weak, but in some months the relationship between the two processes increases. For all regions except the Eastern Steppe, significant correlation coefficients (on significance level α = 0.05) are observed in March and May, and range from −0.45 in the Western Steppe to −0.77 in the Carpathians. In this case, the statistical relationship is inverse, i.e., when the positive phase of NAO increases, the soil moisture content decreases. With the weakening of zonal flow (negative phase of NAO), soil moisture content increases. This feature is due to the fact that during the positive phase of NAO, intensive cyclonic activity develops in the northern parts of Europe, where there is an increased amount of precipitation [
12]. In the southern regions of Europe, on the contrary, anticyclonic circulation with a deficit of precipitation is prevailed. Under the negative NAO phase, when the zonal flow is weakened over the continent, the meridional circulation intensity is increased, which may lead to the transport of warm and moist air masses from the Mediterranean to Eastern Europe.
During the study period in March the positive phase of NAO prevailed (60%), which contributed to the reduction of soil moisture content in early spring. In May, both phases of NAO had almost the same frequency, which indicates an increased variability of atmospheric processes during the restructuring of the atmospheric circulation to the summer regime. In the Western Steppe, the significant correlation between NAO and SMAI also was found in December, and in the Forest-Steppe in October (both r = −0.45). In December, the positive phase of NAO prevailed during the study period, and in October, as in May, both phases appeared of equal frequency. In summer, a positive statistical relationship between the parameters is observed only in July, but it is insignificant in all areas.
Analysis of the correlation coefficients between the SMAI index and the ECBI showed that in July there is a positive correlation between the parameters, i.e., an increase in meridionality (ECBI > 0) leads to an increase in soil moisture content, which obviously associated with the formation of cut-of-lows or upper deep troughs over the territory of Eastern Europe, which often provide active convection and precipitation in summer [
13]. Intensification of the zonal flow (ECBI < 0), which in summer is usually accompanied by the spread of high pressure ridges from the west, on the contrary leads to negative anomalies of soil moisture content. In the autumn months, negative significant correlation coefficients predominate, with the highest values in October and November in most agroclimatic zones (r = −0.69 ...−0.49). That is, the blocking processes, associated in this period in Eastern Europe with the establishment of anticyclonic circulation, lead to a decrease in soil moisture due to the lack of precipitation. In the winter and spring months, the correlation, in general, is weak and heterogeneous in agroclimatic zones. But in January in Polesie a significant positive correlation (r = 0.46) is observed, so for this zone a positive contribution to the increase in soil moisture gives the intensification of zonal flow, accompanied by cyclonic activity in the northern part of the temperate zone.