Retrieval of the Atmospheric Temperature and Humidity Profiles Using a Feed-Forward Neural Network †
Abstract
:1. Introduction
2. Data and Inverse Model Framework
2.1. Data
2.2. Inverse Model Framework
2.2.1. Feed-Forward Neural Network
2.2.2. Sensitivity to Learning Rate
2.2.3. Structure of the Inverse Model
3. Results
4. Conclusions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrett, E.C.; Hamilton, M.G. Potentialities and problems of satellite remote sensing with special reference to arid and semiarid regions. Clim. Chang. 1986, 9, 167–186. [Google Scholar] [CrossRef]
- Trenberth, K.E. The use and abuse of climate models. Nature 1997, 386, 131–133. [Google Scholar] [CrossRef]
- Rodwell, M.J.; Palmer, T.N. Using numerical weather prediction to assess climate models. Q. J. R. Meteorol. Soc. 2007, 133, 129–146. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R.E. The role of satellite remote sensing in climate change studies. Nat. Clim. Chang. 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Luers, J.K.; Eskridge, R.E. Use of radiosonde temperature data in climate studies. J. Clim. 1998, 11, 1002–1019. [Google Scholar] [CrossRef]
- Karmakar, P. Ground-Based Microwave Radiometry and Remote Sensing: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2013; p. 214. ISBN 978146651631. [Google Scholar]
- Decker, M.T.; Westwater, E.R.; Guiraud, F.O. Experimental evaluation of ground-based microwave radiometric sensing of atmospheric temperature and water vapor profiles. J. Appl. Meteorol. 1978, 17, 1788–1795. [Google Scholar] [CrossRef] [Green Version]
- Askne, J.; Westwater, E. A review of ground-based remote sensing of temperature and moisture by passive microwave radiometers. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 340–352. [Google Scholar] [CrossRef]
- Acciani, G.; Orazio, A.D. Radiometric profiling of temperature using algorithm based on neural network. IEEE Electron. Lett. 2003, 39, 1261. [Google Scholar] [CrossRef]
- Madhulatha, A.; Rajeevan, M. Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations. J. Geophys. Res. Atmos. 2013, 118, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Crewell, S.; Czekala, H.; Lohnert, U.; Simmer, C.; Rose, T.; Zimmermann, R.; Zimmermann, R. Microwave radiometer for cloud carthography: A 22-channel ground-based microwave radiometer for atmospheric research. Radio Sci. 2001, 36, 621–638. [Google Scholar] [CrossRef]
- Szalowski, K. The effect of the solar eclipse on the air temperature near the ground. J. Atmos. Solar Terrestr. Phys. 2003, 64, 1589–1600. [Google Scholar] [CrossRef]
- Cimini, D.; Rizi, V.; Di Girolamo, P.; Marzano, F.S.; Macke, A.; Pappalardo, G.; Richter, A. Overview: Tropospheric profiling: State of the art and future challenges—Introduction to the AMT special issue. Atmos. Meas. Tech. 2014, 7, 2981–2986. [Google Scholar] [CrossRef]
- Harikishan, G.; Padmakumari, B.; Maheskumar, R.S.; Pandithurai, G. Macrophysical and microphysical properties of monsoon clouds over a rain shadow region in India from ground-based radiometric measurements. J. Geophys. Res. 2013. [Google Scholar] [CrossRef]
- Kadygrov, E.N. Study of Atmospheric Boundary Layer Thermodynamics During Total Solar Eclipses. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4672–4677. [Google Scholar] [CrossRef]
- Solheim, F.; Godwin, J.; Westwater, E.R.; Han, Y.; Keihm, S.; Marsh, K.; Ware, R. Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods. Radio Sci. 1998, 33, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Westwater, E.R. Remote sensing of tropospheric water vapor and cloud liquid water by integrated ground-based sensors. J. Atmos. Ocean. Technol. 1995, 12, 1050–1059. [Google Scholar] [CrossRef] [Green Version]
- Westwater, E.R. Ground-based microwave remote sensing of meteorological variables. In Atmospheric Remote Sensing by Microwave Radiometry; Janssen, M.A., Ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1993; pp. 145–213. [Google Scholar]
- Rodgers, C.D. Retrieval of Atmospheric Temperature and Composition from Remote Measurements of Thermal Radiation. Rev. Geophys. Space Phys. 1976, 14, 609–624. [Google Scholar] [CrossRef]
- Li, L.; Vevekanandan, J.; Chan, C.H.; Tsang, L. Microwave radiometric technique to retrieve vapor, liquid and ice: Development of Neural Network—Based Inversion Method Part-1. IEEE Trans. Geosci. Remote Sens. 1997, 35, 224–236. [Google Scholar] [CrossRef] [Green Version]
- Rambabu, S.; Pillai, J.S.; Agarwal, A.; Pandithurai, G. Evaluation of brightness temperature from a forward model of ground-based microwave radiometer. J. Earth Syst. Sci. 2014, 123, 641–650. [Google Scholar] [CrossRef] [Green Version]
Sr. No. | Water Vapor Channel (GHz) | Temperature Channel (GHz) |
---|---|---|
1 | 22.234 | 51.248 |
2 | 22.500 | 51.760 |
3 | 23.034 | 52.280 |
4 | 23.834 | 52.804 |
5 | 25.000 | 53.336 |
6 | 26.234 | 53.848 |
7 | 28.000 | 54.400 |
8 | 30.000 | 54.940 |
9 | - | 55.500 |
10 | - | 56.020 |
11 | - | 56.660 |
12 | - | 57.288 |
13 | - | 57.964 |
14 | - | 58.800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathak, R. Retrieval of the Atmospheric Temperature and Humidity Profiles Using a Feed-Forward Neural Network. Environ. Sci. Proc. 2021, 8, 17. https://doi.org/10.3390/ecas2021-10325
Pathak R. Retrieval of the Atmospheric Temperature and Humidity Profiles Using a Feed-Forward Neural Network. Environmental Sciences Proceedings. 2021; 8(1):17. https://doi.org/10.3390/ecas2021-10325
Chicago/Turabian StylePathak, Raju. 2021. "Retrieval of the Atmospheric Temperature and Humidity Profiles Using a Feed-Forward Neural Network" Environmental Sciences Proceedings 8, no. 1: 17. https://doi.org/10.3390/ecas2021-10325
APA StylePathak, R. (2021). Retrieval of the Atmospheric Temperature and Humidity Profiles Using a Feed-Forward Neural Network. Environmental Sciences Proceedings, 8(1), 17. https://doi.org/10.3390/ecas2021-10325