Source and Source Region of Carbonaceous Species and Trace Elements in PM10 over Delhi, India †
Abstract
:1. Introduction
2. Methodology
2.1. Observation Site
2.2. Sample Collection
2.3. Analysis (OC, EC, WSOC, Trace Metals)
2.4. Potential Component Analysis (PCA)
2.5. Conditional Bivariate Probability Function (CBPF)
2.6. Trajectory Analysis
2.7. Potential Source Contribution Factor (PSCF)
3. Result and Discussions
3.1. Concentration Profile
3.2. Source Apportionment
3.3. Conditional Bivariate Probability Function (CBPF)
3.4. Trajactory and Potential Source Contribution Factor (PSCF)
4. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xin, Y.; Wang, G.; Chen, L. Identification of long range transported pathways and potential sources of PM10 in Tibet plateau uplift area: Case study of Xining, China in 2014. Aerosol Air Qual. Res. 2016, 16, 1044–1054. [Google Scholar] [CrossRef] [Green Version]
- Fleming, Z.L.; Monks, P.S.; Alistair, J.M. Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos. Res. 2012, 104, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Mahapatra, P.S.; Sinha, P.R.; Boopathya, R.; Dasa, T.; Mohantye, S.; Sahuf, S.C.; Gurjar, B.R. Seasonal progression of atmospheric particulate matter over an urban coastal region in peninsular India: Role of local meteorology and long-range transport. Atmos. Res. 2018, 199, 145–158. [Google Scholar] [CrossRef]
- Jeong, U.; Kim, J.; Lee, H.; Jung, J.; Kim, Y.J.; Song, C.H.; Koo, J.H. Estimation of the contributions of long range transported aerosol in East asia to carbonaceous aerosols and PM concentration in Seoul, Korea using highly time resolved measurement: A PSCF model approach. J. Environ. Monit. 2011, 13, 1905–1918. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.H.; Seinfeld, J.H. Global distribution and climate forcing of carbonaceous aerosols. J. Geophys. Res. 2002, 107, 4407. [Google Scholar] [CrossRef] [Green Version]
- Chýlek, P.; Ramaswamy, V.; Cheng, R.J. Effect of graphitic carbon on the albedo of clouds. J. Atmos. Sci. 1984, 41, 3076–3084. [Google Scholar] [CrossRef] [Green Version]
- Hansen, A.D.A.; Rosen, H.; Novakov, T. The aethalometer—An instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ. 1984, 36, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Chen, J.; Qin, W.; Cheng, S.; Zhang, Y.; Sun, Y.; Xin, K.; Ahmad, M. Characteristics, primary sources and secondary formation of water-soluble organic aerosols in downtown Beijing. Atmos. Chem. Phys. 2021, 21, 1775–1796. [Google Scholar] [CrossRef]
- Putaud, J.P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J. A European aerosol phenomenology-3: Physical and chemical charac-teristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 2010, 44, 1308–1320. [Google Scholar] [CrossRef]
- Yin, J.; Harrison, R.M. Pragmatic mass closure study for PM1, PM2.5and PM10 at roadside, urban background and rural sites. Atmos. Environ. 2010, 42, 980–988. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, S.K.; Srivatava, M.K.; Chaterjee, A.; Singh, R.K.; Mandal, T.K.; Saxena, M. Source apportionment of PM10 over three tropical urban atmospheres at Indo- Gangetic Plain of India: An approach using different receptor models. Arch. Environ. Contam. Toxicol. 2018, 76, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.; Watson, J.G.; Chen, L.W.A.; Arnott, W.P.; Moosmüller, H.; Fung, K. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ. Sci. Technol. 2004, 38, 4414–4422. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mandal, T.K.; Saxena, M.; Sharma, A.; Datta, A.; Saud, T. Variation of OC, EC, WSIC and trace metals of PM10 in Delhi, India. J. Atmos. Sol.-Terr. Phys. 2014, 113, 10–22. [Google Scholar] [CrossRef]
- Banoo, R.; Sharma, S.K.; Gadi, R.; Gupta, R.; Mandal, T.K. Seasonal variation of carbonaceous species of PM10 over urban sites of National Capital Region of India. Aerosol Sci. Eng. 2020, 4, 111–123. [Google Scholar] [CrossRef]
- Rai, A.; Mukherjee, S.; Chatterjee, A.; Choudhary, N.; Kotnala, G.; Mandal, T.K.; Sharma, S.K. Seasonal variation of OC, EC and WSOC of PM10 and their CWT analysis over the eastern Himalaya. Aerosol Sci. Eng. 2020, 4, 26–40. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, S.K.; Choudhary, N.; Masiwal, R.; Saxena, M.; Sharma, A.; Mandal, T.K.; Gupta, A.; Gupta, N.C.; Sharma, C. Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environ. Sci. Pollut. Res. 2017, 24, 14637–14656. [Google Scholar] [CrossRef] [PubMed]
- Paul, C.; Suman, A.A. Methodological Analysis of Principal Component Analysis (PCA) Method. Int. J. Comput. Eng. Manag. 2013, 16, 32–38. [Google Scholar]
- Gupta, S.; Gadi, R.; Sharma, S.K.; Mandal, T.K. Characterization and source apportionment of organic compounds in PM10 using PCA and PMF at a traffic hotspot of Delhi. Sustain. Cities Soc. 2018, 38, 52–67. [Google Scholar] [CrossRef]
- Mishra, S.P.; Sarkar, T.; Taraphder, S.; Datta, S.; Swain, D.P.; Saikhom, R.; Panda, S.; Laishram, M. Multivariate Statistical Date Analysis-Principal Component Analysis (PCA). Int. J. Livest. Res. 2017, 5, 60–78. [Google Scholar] [CrossRef]
- Draxler, R.R.; Rolph, G.D. Hysplit (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. 2003. Available online: http://www.arl.noaa.gov/ready/hysplit4.html (accessed on 14 September 2021).
- Liu, N.; Yu, Y.; Chen, J.B.; He, J.J.; Zhao, S.P. Identification of potential sources and transport pathways of atmospheric PM10 using HYSPLIT and hybrid receptor modelling in Lanzhou, China. Trans. Ecol. Environ. 2011, 147, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Sharma, S.K.; Vijayan, N.; Mandal, T.K. Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four years study over Delhi, India. Environ. Poll. 2020, 262, 114337. [Google Scholar] [CrossRef] [PubMed]
- Khillare, P.; Sarkar, S. Airborne inhale metals in resident areas of Delhi, India: Distribution, source apportionment and health risks. Atmos. Chem. Phys. 2012, 3, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Bawase, M.; Sathe, Y.; Khandaskar, H. Chemical composition and source attribution of PM2.5 and PM10 in Delhi-National Capital Region (NCR) of India: Results from an extensive seasonal campaign. J. Atmos. Chem. 2021, 78, 35–58. [Google Scholar] [CrossRef]
- Begum, B.A.; Biswas, S.K.; Hopke, P.K. Key issues in controlling air pollutants in Dhaka, Bangladesh. Atmos. Environ. 2010, 45, 7705–7713. [Google Scholar] [CrossRef]
- Balachandran, S.; Meena, B.R.; Khillare, P.S. Particle size distribution and its elemental composition in the ambient air of Delhi. Environ. Int. 2000, 26, 49–54. [Google Scholar] [CrossRef]
- Khare, P.; Baruah, B.P.; Rao, P.G. Water-soluble organic compounds (WSOCMs) in PM2.5 and PM10 at a subtropical site of India. Tellus B Chem. Phys. Meteorol. 2011, 63, 990–1000. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Gupta, T. Chemical Characterization and Source Apportionment of Submicron (PM1) Aerosol in Kanpur Region, India. Aerosol. Air Qual. 2010, 10, 433–445. [Google Scholar] [CrossRef]
Carbonaceous Species | Concentration | Range |
---|---|---|
PM10 (µg m−3) | 237 ± 104 | 31–733 |
EC (µg m−3) | 6.7 ± 5.2 | 0.9–35.6 |
OC (µg m−3) | 25.3 ± 14.6 | 4.2–77.6 |
WSOC (µg m−3) | 10.6 ± 7.5 | 2.4–56.0 |
OC/EC | 4.3 ±1.6 | 1.3–12.6 |
Species | Factor-1 | Factor-2 | Factor-3 | Factor-4 | Factor-5 |
---|---|---|---|---|---|
EC | - | 0.161 | 0.833 | 0.148 | - |
OC | - | 0.154 | 0.876 | 0.118 | - |
WSOC | - | 0.160 | 0.820 | - | - |
Al | 0.893 | 0.104 | 0.110 | 0.111 | |
S | 0.157 | 0.554 | - | 0.205 | |
P | 0.927 | - | - | - | - |
Mn | 0.897 | 0.109 | - | - | - |
Ti | 0.798 | 0.373 | - | 0.160 | - |
Br | 0.579 | 0.418 | 0.247 | 0.105 | |
Pb | - | 0.854 | 0.159 | - | - |
Zn | 0.129 | 0.846 | 0.155 | - | - |
Cr | 0.436 | 0.823 | - | ||
Na | - | 0.543 | 0.300 | 0.408 | 0.284 |
Ca | 0.129 | 0.207 | 0.116 | 0.796 | 0.288 |
Fe | 0.302 | - | 0.764 | ||
Mg | - | - | 0.653 | ||
F | - | 0.177 | 0.166 | 0.608 | |
K | - | 0.340 | 0.549 | 0.558 | - |
Cl | 0.340 | 0.388 | 0.438 | - | |
Cu | 0.188 | - | 0.217 | 0.805 | |
As | 0.208 | - | 0.263 | - | |
% Variance | 18.59 | 16.56 | 15.59 | 13.56 | 5.95 |
CV % | 18.59 | 35.15 | 50.74 | 64.30 | 70.25 |
Sources | Crustal/RD | IE | BB + FFC | BB + RD | VE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banoo, R.; Sharma, S.K.; Rani, M.; Mandal, T.K. Source and Source Region of Carbonaceous Species and Trace Elements in PM10 over Delhi, India. Environ. Sci. Proc. 2021, 8, 2. https://doi.org/10.3390/ecas2021-10346
Banoo R, Sharma SK, Rani M, Mandal TK. Source and Source Region of Carbonaceous Species and Trace Elements in PM10 over Delhi, India. Environmental Sciences Proceedings. 2021; 8(1):2. https://doi.org/10.3390/ecas2021-10346
Chicago/Turabian StyleBanoo, Rubiya, Sudhir Kumar Sharma, Martina Rani, and Tuhin Kumar Mandal. 2021. "Source and Source Region of Carbonaceous Species and Trace Elements in PM10 over Delhi, India" Environmental Sciences Proceedings 8, no. 1: 2. https://doi.org/10.3390/ecas2021-10346
APA StyleBanoo, R., Sharma, S. K., Rani, M., & Mandal, T. K. (2021). Source and Source Region of Carbonaceous Species and Trace Elements in PM10 over Delhi, India. Environmental Sciences Proceedings, 8(1), 2. https://doi.org/10.3390/ecas2021-10346