Assessment of Satellite and Reanalysis Precipitation Products for Rainfall–Runoff Modelling in a Mountainous Basin †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
3. Result and Discussion
3.1. Mean Daily Precipitation
3.2. Quantitative and Categorical Performance of PPs
3.3. Hydrologic Utility of PPs
4. Conclusions
- All PPs show high detectability for low-intensity precipitation, where their detectability strength decreases for high-intensity precipitation for the considered entire period and four seasons. Furthermore, ERA5 shows high detectability in almost all precipitation events compared with the other PPs.
- In the direct comparison, all PP performances (median of KGE varies from −0.06 of TMPA-3B42v7 to 0.08 of ERA5) are low for daily precipitation during the entire period. Although PP correlations (R) are higher, high/low bias and variability ratios cause detrimental effects.
- PPs show better reproducibility for streamflow when evaluated against direct precipitation comparison with gauge data. Moreover, PPs are able to estimate streamflow with high accuracy if model parameters are calibrated by PPs individually. TMPA-3B42v7 shows the highest performance for streamflow simulation in both the calibration (NSE, 0.82) and validation (NSE, 0.64) periods in scheme-2, followed by IMERGHHFv06 and ERA5. PERSIANN shows variable performance in both schemes for calibration/validation and has the lowest performance of all PPs in scheme-2.
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Sun, A.; Sun, H.; Gui, D.; Xue, J.; Liao, W.; Yan, D.; Zhao, N.; Zeng, X. Error adjustment of TMPA satellite precipitation estimates and assessment of their hydrological utility in the middle and upper Yangtze River Basin, China. Atmos. Res. 2019, 216, 52–64. [Google Scholar] [CrossRef]
- Indu, J.; Kumar, D.N. Copula-based modeling of TMI brightness temperature with rainfall type. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4832–4845. [Google Scholar] [CrossRef]
- Talchabhadel, R.; Aryal, A.; Kawaike, K.; Yamanoi, K.; Nakagawa, H.; Bhatta, B.; Karki, S.; Thapa, B.R. Evaluation of precipitation elasticity using precipitation data from ground and satellite-based estimates and watershed modeling in Western Nepal. J. Hydrol. Reg. Stud. 2021, 33, 100768. [Google Scholar] [CrossRef]
- Berg, P.; Norin, L.; Olsson, J. Creation of a high resolution precipitation data set by merging gridded gauge data and radar observations for Sweden. J. Hydrol. 2016, 541, 6–13. [Google Scholar] [CrossRef]
- Shi, H.; Chen, J.; Li, T.; Wang, G. A new method for estimation of spatially distributed rainfall through merging satellite observations, raingauge records, and terrain digital elevation model data. J. Hydro-Environ. Res. 2017. [Google Scholar] [CrossRef]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Li, M.; Shao, Q. An improved statistical approach to merge satellite rainfall estimates and raingauge data. J. Hydrol. 2010, 385, 51–64. [Google Scholar] [CrossRef]
- Gourley, J.J.; Vieux, B.E. A method for identifying sources of model uncertainty in rainfall-runoff simulations. J. Hydrol. 2006, 327, 68–80. [Google Scholar] [CrossRef]
- Xue, X.; Hong, Y.; Limaye, A.S.; Gourley, J.J.; Huffman, G.J.; Khan, S.I.; Dorji, C.; Chen, S. Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol. 2013, 499, 91–99. [Google Scholar] [CrossRef]
- Le, M.-H.; Lakshmi, V.; Bolten, J.; Du Bui, D. Adequacy of satellite-derived precipitation estimate for hydrological modeling in Vietnam Basins. J. Hydrol. 2020, 586, 124820. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Liang, Z.; Huang, C.; Li, Z.; Hu, B. Performance Assessment of GSMaP and GPM IMERG Products during Typhoon Mangkhut. Atmosphere 2021, 12, 134. [Google Scholar] [CrossRef]
- Aznarez, C.; Jimeno-Sáez, P.; López-Ballesteros, A.; Pacheco, J.P.; Senent-Aparicio, J. Analysing the Impact of Climate Change on Hydrological Ecosystem Services in Laguna del Sauce (Uruguay) Using the SWAT Model and Remote Sensing Data. Remote Sens. 2021, 13, 2014. [Google Scholar] [CrossRef]
- Doddy Clarke, E.; Griffin, S.; McDermott, F.; Monteiro Correia, J.; Sweeney, C. Which Reanalysis Dataset Should We Use for Renewable Energy Analysis in Ireland? Atmosphere 2021, 12, 624. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM multi-satellite precipitation analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–22. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.-L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J. Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). In Satellite Precipitation Measurement; Springer: Berlin/Heidelberg, Germany, 2020; pp. 343–353. [Google Scholar]
- Hersbach, H.; Dee, D. ERA5 Reanalysis Is in Production; ECMWF: Reading, UK, 2016; Volume 147, Available online: www.ecmwf.int/sites/default/files/elibrary/2016/16299newsletterno147spring2016.pdf (accessed on 16 July 2021).
- Hsu, K.L.; Gupta, H.V.; Gao, X.; Sorooshian, S. Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour. Res. 1999, 35, 1605–1618. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Recknagel, F.; Meyer, W.; Frizenschaf, J.; Ying, H.; Gibbs, M.S. Comparison of the alternative models SOURCE and SWAT for predicting catchment streamflow, sediment and nutrient loads under the effect of land use changes. Sci. Total Environ. 2019, 662, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.P. Hydrologic modeling: Progress and future directions. Geosci. Lett. 2018, 5, 15. [Google Scholar] [CrossRef]
- Krysanova, V.; Srinivasan, R. Assessment of climate and land use change impacts with SWAT. Reg. Environ. Chang. 2015, 15, 431–434. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanpour, A.K.; Hessels, T.; Moghim, S.; Afshar, A. Comparison and assessment of spatial downscaling methods for enhancing the accuracy of satellite-based precipitation over Lake Urmia Basin. J. Hydrol. 2021, 596, 126055. [Google Scholar] [CrossRef]
- Zhao, N. An Efficient Downscaling Scheme for High-Resolution Precipitation Estimates over a High Mountainous Watershed. Remote Sens. 2021, 13, 234. [Google Scholar] [CrossRef]
- Wang, W.; Lin, H.; Chen, N.; Chen, Z. Evaluation of multi-source precipitation products over the Yangtze River Basin. Atmos. Res. 2021, 249, 105287. [Google Scholar] [CrossRef]
- Aksu, H.; Akgül, M.A. Performance evaluation of CHIRPS satellite precipitation estimates over Turkey. Theor. Appl. Climatol. 2020, 142, 71–84. [Google Scholar] [CrossRef]
- Amjad, M.; Yilmaz, M.T.; Yucel, I.; Yilmaz, K.K. Performance evaluation of satellite-and model-based precipitation products over varying climate and complex topography. J. Hydrol. 2020, 584, 124707. [Google Scholar] [CrossRef]
- Irvem, A.; Ozbuldu, M. Evaluation of Satellite and Reanalysis Precipitation Products Using GIS for All Basins in Turkey. Adv. Meteorol. 2019, 2019, 4820136. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- WMO (World Meteorological Organization). Guide to Hydrological Practices. Volume I: Hydrology—From Measurement to Hydrological Information; WMO: Geneva, Switzerland, 2008. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M.; Nauditt, A.; Birkel, C.; Verbist, K.; Ribbe, L. Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrol. Earth Syst. Sci. 2017, 21, 1295. [Google Scholar] [CrossRef] [Green Version]
Name | Data Source(s) | Spatial Resolution | Spatial Coverage | Temporal Resolution | Reference |
---|---|---|---|---|---|
TMPA-3B42v7 | G, S | 0.25° | 50° N/S | 3 hourly | [14] |
IMERGHHFv06 | G, S | 0.10° | 60° N/S | 30 min | [15] |
ERA5 | R | 0.25° | 50° N/S | Hourly | [16] |
PERSIANN | S | 0.25° | 60° N/S | Hourly | [17] |
Performance Indicator | Mathematical Statement | Explanation |
---|---|---|
Kling–Gupta efficiency and its components | R (Pearson correlation coefficient), β (bias) is the ratio of the estimated and observed mean, VR (variability ratio) is the ratio of estimated and observed coefficients of the variation, µ and δ are the distribution mean and standard deviation where s and o indicate estimated and observed. M (miss) is when the observed precipitation is not detected. F (false) is when the precipitation is detected but not observed, H (hit) is when the observed precipitation is correctly detected, CN (correct negative) is when no precipitation event is detected. n is the sample size of the observed or calculated streamflow. and present the observed and simulated streamflow, and presents the mean observed streamflow. | |
Hansen–Kuiper | ||
Nash–Sutcliffe efficiency |
Parameter and Units | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
Snow correction factor—SCF (-) | 0.9–1.5 | 1.44 | 1.12 | 1.03 | 0.91 | 1.46 |
Degree-day factor—DDF (mm/°C/day) | 0.0–5.0 | 0.36 | 0.3 | 0.51 | 0.36 | 0.33 |
Temperature threshold above which precipitation is rain—Tr (°C) | 1.0–3.0 | 2.51 | 1.74 | 1.43 | 2.92 | 2.99 |
Temperature threshold below which precipitation is snow—Ts (°C) | −3.0–1.0 | −1.01 | −0.01 | −0.1 | −2.13 | 1 |
Temperature threshold above which melt starts—Tm (°C) | −2.0–2.0 | −0.5 | −1.86 | 0.87 | −0.92 | 1.87 |
Parameter related to the limit for potential evaporation—Lpart (-) | 0.0–1.0 | 0.88 | 0.6 | 0.36 | 0.82 | 0.69 |
Field capacity—FC (mm) | 0.0–600 | 132.2 | 317.8 | 45.3 | 115.3 | 591.5 |
Nonlinear parameter for runoff production—Beta (-) | 0.0–20 | 0.97 | 1.82 | 5.52 | 14.75 | 0.05 |
Constant percolation rate—K0 (mm/day) | 0.0–2.0 | 0.69 | 1.09 | 0.73 | 1.2 | 1.34 |
Storage coefficient for very fast response—K1 (day) | 2.0–30 | 26.39 | 23.12 | 20.06 | 27 | 27.08 |
Storage coefficient for fast response—K2 (day) | 30–250 | 36.1 | 38.3 | 50.9 | 78.5 | 245.5 |
Storage coefficient for slow response—lsuz (day) | 1.0–100 | 51.8 | 87.9 | 57.5 | 46.4 | 98.4 |
Threshold storage state—cperc (mm) | 0.0–8.0 | 6.44 | 5.03 | 6.97 | 6.79 | 0.39 |
Maximum base at low flows—bmax (day) | 0.0–30 | 14.23 | 13.65 | 7.78 | 7.45 | 15.4 |
Free scaling parameter—croute (day2/mm) | 0.0–50 | 17.81 | 27.37 | 24.35 | 29.37 | 5.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafizi, H.; Sorman, A.A. Assessment of Satellite and Reanalysis Precipitation Products for Rainfall–Runoff Modelling in a Mountainous Basin. Environ. Sci. Proc. 2021, 8, 25. https://doi.org/10.3390/ecas2021-10345
Hafizi H, Sorman AA. Assessment of Satellite and Reanalysis Precipitation Products for Rainfall–Runoff Modelling in a Mountainous Basin. Environmental Sciences Proceedings. 2021; 8(1):25. https://doi.org/10.3390/ecas2021-10345
Chicago/Turabian StyleHafizi, Hamed, and Ali Arda Sorman. 2021. "Assessment of Satellite and Reanalysis Precipitation Products for Rainfall–Runoff Modelling in a Mountainous Basin" Environmental Sciences Proceedings 8, no. 1: 25. https://doi.org/10.3390/ecas2021-10345
APA StyleHafizi, H., & Sorman, A. A. (2021). Assessment of Satellite and Reanalysis Precipitation Products for Rainfall–Runoff Modelling in a Mountainous Basin. Environmental Sciences Proceedings, 8(1), 25. https://doi.org/10.3390/ecas2021-10345