Distribution of HPV Types in Tumor Tissue from Non-Vaccinated Women with Cervical Cancer in Norway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Pretreatment, Isolation, and Purification of Nucleic Acids
2.4. Human Papillomavirus Testing
2.5. Study Outcomes
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- World Health Organization. Global Strategy to Accelerate the Elimination of Cervical Cancer as a Public Health Problem; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Petersen, Z.; Jaca, A.; Ginindza, T.G.; Maseko, G.; Takatshana, S.; Ndlovu, P.; Zondi, N.; Zungu, N.; Varghese, C.; Hunting, G.; et al. Barriers to uptake of cervical cancer screening services in low-and-middle-income countries: A systematic review. BMC Womens Health 2022, 22, 486. [Google Scholar] [CrossRef] [PubMed]
- Ronco, G.; Dillner, J.; Elfstrom, K.M.; Tunesi, S.; Snijders, P.J.; Arbyn, M.; Kitchener, H.; Segnan, N.; Gilham, C.; Giorgi-Rossi, P.; et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. Lancet 2014, 383, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Engesæter, B.; Groeneveld, L.F.; Skare, G.B.; Tropé, A. Annual Report of the Cervical Cancer Screening Program; Kreftregisteret, Institute of Population-Based Cancer Research: Oslo, Norway, 2021; Available online: www.kreftregisteret.no/livmorhals (accessed on 15 June 2022).
- Norwegian Institute of Public Health (NIPH). “High Vaccine Uptake in the Childhood Immunisation Programme.” News. Published 07.04.2022. Available online: https://www.fhi.no/en/news/2022/high-vaccine-uptake-in-the-childhood-immunisation-programme/ (accessed on 15 June 2022).
- Kreftregisteret (The Cancer Registry of Norway) (n.d.). Livmorhalskreft [Cervical Cancer]. Available online: https://www.kreftregisteret.no/Temasider/kreftformer/Livmorhalskreft/ (accessed on 15 June 2023).
- zur Hausen, H. Papillomaviruses and cancer: From basic studies to clinical application. Nat. Rev. Cancer 2002, 2, 342–350. [Google Scholar] [CrossRef]
- Bosch, F.X. HPV vaccines and cervical cancer. Ann. Oncol. 2008, 19 (Suppl. S5), v48–v51. [Google Scholar] [CrossRef]
- Joura, E.A.; Ault, K.A.; Bosch, F.X.; Brown, D.; Cuzick, J.; Ferris, D.; Garland, S.M.; Giuliano, A.R.; Hernandez-Avila, M.; Huh, W.; et al. Attribution of 12 high-risk human papillomavirus genotypes to infection and cervical disease. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1997–2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, B.; de Sanjosé, S.; Tous, S.; Quiros, B.; Muñoz, N.; Bosch, X.; Alemany, L. Human papillomavirus genotype attribution for HPVs 6, 11, 16, 18, 31, 33, 45, 52 and 58 in female anogenital lesions. Eur. J. Cancer. 2015, 51, 1732–1741. [Google Scholar] [CrossRef]
- de Sanjose, S.; Quint, W.G.; Alemany, L.; Geraets, D.T.; Klaustermeier, J.E.; Lloveras, B.; Tous, S.; Felix, A.; Bravo, L.E.; Shin, H.R.; et al. Retrospective International Survey and HPV Time Trends Study Group. Human papillomavirus genotype attribution in invasive cervical cancer: A retrospective cross-sectional worldwide study. Lancet Oncol. 2010, 11, 1048–1056. [Google Scholar] [CrossRef]
- Bonde, J.H.; Sandri, M.T.; Gary, D.S.; Andrews, J.C. Clinical Utility of Human Papillomavirus Genotyping in Cervical Cancer Screening: A Systematic Review. J. Low. Genit. Tract. Dis. 2020, 24, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Arbyn, M.; Tommasino, M.; Depuydt, C.; Dillner, J. Are 20 human papillomavirus types causing cervical cancer? J. Pathol. 2014, 234, 431–435. [Google Scholar] [CrossRef]
- Kjaer, S.K.; Nygård, M.; Sundström, K.; Munk, C.; Berger, S.; Dzabic, M.; Fridrich, K.E.; Waldstrøm, M.; Sørbye, S.W.; Bautista, O.; et al. A. Long-term effectiveness of the nine-valent human papillomavirus vaccine in Scandinavian women: Interim analysis after 8 years of follow-up. Hum Vaccin. Immunother. 2021, 17, 943–949. [Google Scholar] [CrossRef]
- Bruni, L.; Albero, G.; Serrano, B.; Mena, M.; Collado, J.J.; Gómez, D.; Muñoz, J.; Bosch, F.X.; de Sanjosé, S.; ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases in the World. Summary Report 10 March 2023. Available online: https://hpvcentre.net/statistics/reports/XWX.pdf?t=1687952491692 (accessed on 15 June 2023).
- van den Brule, A.J.; Pol, R.; Fransen-Daalmeijer, N.; Schouls, L.M.; Meijer, C.J.; Snijders, P.J. GP5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes. J. Clin. Microbiol. 2002, 40, 779–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snijders, P.J.; van den Brule, A.J.; Jacobs, M.V.; Pol, R.P.; Meijer, C.J. HPV DNA detection and typing in cervical scrapes. Methods Mol. Med. 2005, 119, 101–114. [Google Scholar]
- Guan, P.; Howell-Jones, R.; Li, N.; Bruni, L.; de Sanjosé, S.; Franceschi, S.; Clifford, G.M. Human papillomavirus types in 115,789 HPV-positive women: A meta-analysis from cervical infection to cancer. Int. J. Cancer 2012, 131, 2349–2359. [Google Scholar] [CrossRef]
- So, K.A.; Lee, I.H.; Lee, K.H.; Hong, S.R.; Kim, Y.J.; Seo, H.H.; Kim, T.J. Human papillomavirus genotype-specific risk in cervical carcinogenesis. J. Gynecol. Oncol. 2019, 30, e52. [Google Scholar] [CrossRef]
- Nygård, M.; Hansen, B.T.; Kjaer, S.K.; Hortlund, M.; Tryggvadóttir, L.; Munk, C.; Lagheden, C.; Sigurdardottir, L.G.; Campbell, S.; Liaw, K.L.; et al. Human papillomavirus genotype-specific risks for cervical intraepithelial lesions. Hum. Vaccin. Immunother. 2021, 17, 972–981. [Google Scholar] [CrossRef]
- Sundström, K.; Dillner, J. How Many Human Papillomavirus Types Do We Need to Screen For? J. Infect. Dis. 2021, 223, 1510–1511. [Google Scholar] [CrossRef]
- Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjose, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health 2020, 8, e191–e203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gravdal, B.H.; Lönnberg, S.; Skare, G.B.; Sulo, G.; Bjørge, T. Cervical cancer in women under 30 years of age in Norway: A population-based cohort study. BMC Womens Health 2021, 21, 110. [Google Scholar] [CrossRef] [PubMed]
- Vänskä, S.; Luostarinen, T.; Lagheden, C.; Eklund, C.; Kleppe, S.N.; Andrae, B.; Sparén, P.; Sundström, K.; Lehtinen, M.; Dillner, J. Differing Age-Specific Cervical Cancer Incidence Between Different Types of Human Papillomavirus: Implications for Predicting the Impact of Elimination Programs. Am. J. Epidemiol. 2021, 190, 506–514. [Google Scholar] [CrossRef]
- Tjalma, W.A.; Fiander, A.; Reich, O.; Powell, N.; Nowakowski, A.M.; Kirschner, B.; Koiss, R.; O’Leary, J.; Joura, E.A.; Rosenlund, M.; et al. Differences in human papillomavirus type distribution in high-grade cervical intraepithelial neoplasia and invasive cervical cancer in Europe. Int. J. Cancer. 2013, 132, 854–867. [Google Scholar] [CrossRef] [PubMed]
- Rad, A.; Sørbye, S.W.; Dreyer, G.; Hovland, S.; Falang, B.M.; Louw, M.; Skjeldestad, F.E. HPV types in cervical cancer tissue in South Africa: A head-to-head comparison by mRNA and DNA tests. Medicine 2017, 96, e8752. [Google Scholar] [CrossRef] [PubMed]
- Lehtinen, M.; Pimenoff, V.N.; Nedjai, B.; Louvanto, K.; Verhoef, L.; Heideman, D.A.M.; El-Zein, M.; Widschwendter, M.; Dillner, J. Assessing the risk of cervical neoplasia in the post-HPV vaccination era. Int. J. Cancer 2023, 152, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- El-Zein, M.; Richardson, L.; Franco, E.L. Cervical cancer screening of HPV vaccinated populations: Cytology, molecular testing, both or none. J. Clin. Virol. 2016, 76 (Suppl. S1), S62–S68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, J.; Ploner, A.; Lehtinen, M.; Sparén, P.; Dillner, J.; Elfström, K.M. Impact of HPV vaccination on cervical screening performance: A population-based cohort study. Br. J. Cancer 2020, 123, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Baasland, I.; Romundstad, P.R.; Eide, M.L.; Jonassen, C.M. Clinical performance of Anyplex II HPV28 by human papillomavirus type and viral load in a referral population. PLoS ONE 2019, 14, e0210997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorbye, S.W.; Fismen, S.; Gutteberg, T.J.; Mortensen, E.S.; Skjeldestad, F.E. HPV mRNA is more specific than HPV DNA in triage of women with minor cervical lesions. PLoS ONE 2014, 9, e112934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Origoni, M.; Cristoforoni, P.; Carminati, G.; Stefani, C.; Costa, S.; Sandri, M.T.; Mariani, L.; Preti, M. E6/E7 mRNA testing for human papilloma virus-induced high-grade cervical intraepithelial disease (CIN2/CIN3): A promising perspective. Ecancermedicalscience 2015, 9, 533. [Google Scholar] [CrossRef] [Green Version]
- Westre, B.; Giske, A.; Guttormsen, H.; Sorbye, S.W.; Skjeldestad, F.E. 5-type HPV mRNA versus 14-type HPV DNA test: Test performance, over-diagnosis and overtreatment in triage of women with minor cervical lesions. BMC Clin. Pathol. 2016, 16, 9. [Google Scholar] [CrossRef] [Green Version]
- Sorbye, S.W.; Fismen, S.; Gutteberg, T.; Mortensen, E.S. Triage of women with minor cervical lesions: Data suggesting a “test and treat” approach for HPV E6/E7 mRNA testing. PLoS ONE 2010, 5, e12724. [Google Scholar] [CrossRef] [Green Version]
- Hampson, I.N. Effects of the Prophylactic HPV Vaccines on HPV Type Prevalence and Cervical Pathology. Viruses 2022, 14, 757. [Google Scholar] [CrossRef] [PubMed]
- Tota, J.E.; Struyf, F.; Merikukka, M.; Gonzalez, P.; Kreimer, A.R.; Bi, D.; Castellsagué, X.; de Carvalho, N.S.; Garland, S.M.; Harper, D.M.; et al. Costa Rica Vaccine Trial and the PATRICIA study groups. Evaluation of Type Replacement Following HPV16/18 Vaccination: Pooled Analysis of Two Randomized Trials. J. Natl. Cancer Inst. 2017, 109, djw300. [Google Scholar] [CrossRef] [PubMed]
- Man, I.; Vänskä, S.; Lehtinen, M.; Bogaards, J.A. Human Papillomavirus Genotype Replacement: Still Too Early to Tell? J. Infect. Dis. 2021, 224, 481–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesher, D.; Soldan, K.; Lehtinen, M.; Beddows, S.; Brisson, M.; Brotherton, J.M.; Chow, E.P.; Cummings, T.; Drolet, M.; Fairley, C.K.; et al. Population-Level Effects of Human Papillomavirus Vaccination Programs on Infections with Nonvaccine Genotypes. Emerg. Infect. Dis. 2016, 22, 1732–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, P.; Kann, H.; Pimenoff, V.N.; Adhikari, I.; Eriksson, T.; Surcel, H.M.; Vänskä, S.; Dillner, J.; Faust, H.; Lehtinen, M. Long-term follow-up of human papillomavirus type replacement among young pregnant Finnish females before and after a community-randomised HPV vaccination trial with moderate coverage. Int. J. Cancer 2020, 147, 3511–3522. [Google Scholar] [CrossRef] [PubMed]
- Carozzi, F.; Puliti, D.; Ocello, C.; Anastasio, P.S.; Moliterni, E.A.; Perinetti, E.; Serradell, L.; Burroni, E.; Confortini, M.; Mantellini, P.; et al. Monitoring vaccine and non-vaccine HPV type prevalence in the post-vaccination era in women living in the Basilicata region, Italy. BMC Infect. Dis. 2018, 18, 38. [Google Scholar] [CrossRef] [Green Version]
- Covert, C.; Ding, L.; Brown, D.; Franco, E.L.; Bernstein, D.I.; Kahn, J.A. Evidence for cross-protection but not type-replacement over the 11 years after human papillomavirus vaccine introduction. Hum. Vaccin. Immunother. 2019, 15, 1962–1969. [Google Scholar] [CrossRef] [Green Version]
- Gargano, J.W.; McClung, N.; Lewis, R.M.; Park, I.U.; Whitney, E.; Castilho, J.L.; Pemmaraju, M.; Niccolai, L.M.; Brackney, M.; DeBess, E.; et al. HPV type-specific trends in cervical precancers in the United States, 2008 to 2016. Int. J. Cancer 2023, 152, 137–150. [Google Scholar] [CrossRef]
- Lewis, R.M.; Naleway, A.L.; Klein, N.P.; Crane, B.; Hsiao, A.; Aukes, L.; Timbol, J.; Querec, T.D.; Steinau, M.; Weinmann, S.; et al. Changes in Cervical Cytology Results and Human Papillomavirus Types Among Persons Screened for Cervical Cancer, 2007 and 2015–2017. J. Low Genit. Tract. Dis. 2022, 26, 135–139. [Google Scholar] [CrossRef]
HPV DNA Results | HPV mRNA Results | |||||
---|---|---|---|---|---|---|
Frequency | Percent | Cumulative Percent | Frequency | Percent | Cumulative | |
Type | n | (%) | (%) | n | (%) | Percent (%) |
HPV 16 | 89 | 50.0 | 50.0 | 90 | 50.6 | 50.6 |
HPV 18 | 31 | 17.4 | 67.4 | 32 | 18.0 | 68.6 |
HPV 45 | 13 | 7.3 | 74.7 | 13 | 7.3 | 75.9 |
HPV 33 | 9 | 5.1 | 79.8 | 8 | 4.5 | 80.4 |
HPV 35 | 8 | 4.5 | 84.3 | * | * | * |
HPV 31 | 4 | 2.2 | 86.5 | 4 | 2.2 | 82.6 |
HPV 39 | 2 | 1.1 | 87.6 | * | * | * |
HPV 52 | 1 | 0.6 | 88.2 | 1 | 0.6 | 83.2 |
HPV 58 | 1 | 0.6 | 88.8 | 1 | 0.6 | 83.8 |
HPV 73 | 1 | 0.6 | 89.4 | * | * | * |
Negative | 19 | 10.7 | 100.0 | 29 | 16.3 | 100.0 |
Total | 178 | 100.0 | 178 | 100.0 |
HPV mRNA | Total | |||
---|---|---|---|---|
Negative | Positive | |||
HPV DNA | Negative | 16 | 3 | 19 |
Positive | 13 | 146 | 159 | |
Total | 29 | 149 | 178 |
Sample | Biopsy (Year) | Age CxCa Diagnosis | Routine Screening (YES/NO) | Last Normal Cytology (Years) | First Abnormal Cytology (Years) | Last Cytology Diagnosis | Screening Failure (YES/NO) | HPV Test LBC (NT/Type) |
---|---|---|---|---|---|---|---|---|
1 | 1996 | 38 | NO | 14 | 0 | Normal | NO | NT |
2 | 1996 | 34 | YES | 1 | 0 | ASC-H | YES | 16 |
3 | 1998 | 45 | YES | 5 | 5 | HSIL | YES | NT |
4 | 1998 | 57 | NO | 1 | 5 | ASC-US | YES | NT |
5 | 2005 | 63 | NO | 32 | 0 | Normal | NO | NT |
6 | 2006 | 56 | NO | 1 | 3 | ASC-H | YES | NT |
7 | 2007 | 78 | NO | 6 | 28 | Normal | YES | NT |
8 | 2010 | 67 | YES | 5 | 5 | HSIL | NO | NT |
9 | 2010 | 75 | NO | 3 | 0 | Normal | YES | NT |
10 | 2011 | 49 | YES | 0 | 0 | ASC-H | YES | NT |
11 | 2011 | 70 | NO | 8 | 28 | Normal | NO | NT |
12 | 2012 | 47 | NO | 1 | 4 | ASC-US | YES | NT |
13 | 2012 | 79 | NO | 0 | 0 | Normal | YES | NT |
14 | 2014 | 44 | NO | 3 | 0 | ASC-H | YES | 16 |
15 | 2015 | 55 | NO | 9 | 0 | HSIL | NO | NT |
16 | 2015 | 30 | YES | Missing | 1 | LSIL | NO | 16 |
HPV Type (DNA/mRNA) | Frequency n | Percent (%) | Cumulative Percent (%) | Screen Detected n (%) | Symptom Detected n (%) |
---|---|---|---|---|---|
HPV 16 | 94 | 52.8 | 52.8 | 41 (57.7) | 53 (49.5) |
HPV 18 | 32 | 18.0 | 70.8 | 19 (26.8) | 13 (12.1) |
HPV 45 | 13 | 7.3 | 78.1 | 2 (2.8) | 11 (10.3) |
HPV 33 | 9 | 5.1 | 83.2 | 3 (4.2) | 6 (5.6) |
HPV 35 | 8 | 4.5 | 87.7 | 1 (1.4) | 7 (6.5) |
HPV 31 | 4 | 2.2 | 89.9 | 1 (1.4) | 3 (2.8) |
HPV 39 | 2 | 1.1 | 91.0 | 0 (0.0) | 2 (1.9) |
HPV 52 | 1 | 0.6 | 91.6 | 0 (0.0) | 1 (0.9) |
HPV 58 | 1 | 0.6 | 92.2 | 0 (0.0) | 1 (0.9) |
HPV 73 | 1 | 0.6 | 92.8 | 1 (1.4) | 0 (0.0) |
Negative | 13 | 7.3 | 100.0 | 3 (4.2) | 10 (9.3) |
Total | 178 | 100.0 | 71 (100.0) | 107 (100.0) |
HPV Type | Age Mean | N | SD | Cumulative % |
---|---|---|---|---|
Negative | 59.9 | 13 | 13.28 | 7.3 |
16 | 45.3 | 94 | 15.29 | 60.1 |
18 | 44.3 | 32 | 11.37 | 78.1 |
45 | 45.5 | 13 | 10.49 | 85.4 |
Other * | 51.6 | 26 | 15.49 | 100.0 |
Total | 47.1 | 178 | 14.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sørbye, S.W.; Falang, B.M.; Antonsen, M. Distribution of HPV Types in Tumor Tissue from Non-Vaccinated Women with Cervical Cancer in Norway. J. Mol. Pathol. 2023, 4, 166-177. https://doi.org/10.3390/jmp4030015
Sørbye SW, Falang BM, Antonsen M. Distribution of HPV Types in Tumor Tissue from Non-Vaccinated Women with Cervical Cancer in Norway. Journal of Molecular Pathology. 2023; 4(3):166-177. https://doi.org/10.3390/jmp4030015
Chicago/Turabian StyleSørbye, Sveinung Wergeland, Bente Marie Falang, and Mona Antonsen. 2023. "Distribution of HPV Types in Tumor Tissue from Non-Vaccinated Women with Cervical Cancer in Norway" Journal of Molecular Pathology 4, no. 3: 166-177. https://doi.org/10.3390/jmp4030015
APA StyleSørbye, S. W., Falang, B. M., & Antonsen, M. (2023). Distribution of HPV Types in Tumor Tissue from Non-Vaccinated Women with Cervical Cancer in Norway. Journal of Molecular Pathology, 4(3), 166-177. https://doi.org/10.3390/jmp4030015