Next-Generation-Sequencing of the Human B-Cell Receptor Improves Detection and Diagnosis and Enhances Disease Monitoring in Patients with Gastric Mucosa-Associated Lymphoid Tissue Lymphoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Identification and Sample Selection
2.2. Tissue Sectioning, Staining and gDNA Extraction
2.3. Library Preparation, Sequencing and Clonality Analysis
2.4. Statistical Analysis
3. Results
Correlation of Results between the Applied NGS Method and Results from Histological Diagnosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Dongen, J.J.; Langerak, A.W.; Bruggemann, M.; Evans, P.A.; Hummel, M.; Lavender, F.L.; Delabesse, E.; Davi, F.; Schuuring, E.; García-Sanz, R.; et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003, 17, 2257–2317. [Google Scholar] [CrossRef]
- Slater, D. Histopathological aspects of cutaneous lymphoma. J. R. Soc. Med. 2001, 94, 337–340. [Google Scholar] [CrossRef]
- Groenen, P.J.; Langerak, A.W.; van Dongen, J.J.; van Krieken, J.H. Pitfalls in TCR gene clonality testing: Teaching cases. J. Hematop. 2008, 1, 97–109. [Google Scholar] [CrossRef]
- Violeta Filip, P.; Cuciureanu, D.; Sorina Diaconu, L.; Maria Vladareanu, A.; Silvia Pop, C. MALT lymphoma: Epidemiology, clinical diagnosis and treatment. J. Med. Life 2018, 11, 187–193. [Google Scholar] [CrossRef]
- Nakamura, S.; Hojo, M. Diagnosis and Treatment for Gastric Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma. J. Clin. Med. 2023, 12, 120. [Google Scholar] [CrossRef]
- Park, B.S.; Lee, S.H. Endoscopic features aiding the diagnosis of gastric mucosa-associated lymphoid tissue lymphoma. Yeungnam Univ. J. Med. 2019, 36, 85–91. [Google Scholar] [CrossRef]
- Zenzri, Y.; Charfi, L.; Sahraoui, G.; Yahyaoui, Y.; Mrad, K.; Boujelbene, N.; Doghri, R. Gastric mucosa-associated lymphoid tissue (MALT) lymphoma: Clinicopathological study and treatment outcome in 50 patients. Pan Afr. Med. J. 2020, 37, 372. [Google Scholar] [CrossRef] [PubMed]
- Perez-Vera, P.; Reyes-Leon, A.; Fuentes-Panana, E.M. Signaling proteins and transcription factors in normal and malignant early B cell development. Bone Marrow Res. 2011, 2011, 502751. [Google Scholar] [CrossRef]
- Langerak, A.W.; Groenen, P.J.T.A.; Brüggemann, M.; Beldjord, K.; Bellan, C.; Bonello, L.; Boone, E.; Carter, G.I.; Catherwood, M.; Davi, F.; et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia 2012, 26, 2159–2171. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.M.; Watson, C.T. Immunoglobulin Light Chain Gene Rearrangements, Receptor Editing and the Development of a Self-Tolerant Antibody Repertoire. Front Immunol. 2018, 9, 2249. [Google Scholar] [CrossRef]
- Bruggemann, M.; Kotrova, M.; Knecht, H.; Bartram, J.; Boudjogrha, M.; Bystry, V.; Fazio, G.; Froňková, E.; Giraud, M.; Grioni, A.; et al. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia 2019, 33, 2241–2253. [Google Scholar] [CrossRef]
- Shin, S.; Hwang, I.S.; Kim, J.; Lee, K.A.; Lee, S.T.; Choi, J.R. Detection of Immunoglobulin Heavy Chain Gene Clonality by Next-Generation Sequencing for Minimal Residual Disease Monitoring in B-Lymphoblastic Leukemia. Ann. Lab. Med. 2017, 37, 331–335. [Google Scholar] [CrossRef]
- Troppan, K.; Wenzl, K.; Neumeister, P.; Deutsch, A. Molecular Pathogenesis of MALT Lymphoma. Gastroenterol. Res. Pract. 2015, 2015, 102656. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Greiner, A.; Trunk, M.J.; Schmausser, B.; Ott, M.M.; Muller-Hermelink, H.K. Somatic hypermutation in low-grade mucosa-associated lymphoid tissue-type B-cell lymphoma. Blood 1995, 86, 3528–3534. [Google Scholar] [CrossRef]
- Groenen, P.J.T.A.; van Raaij, A.; van Altena, M.C.; Rombout, P.M.; van Krieken, J.M.H. A practical approach to diagnostic Ig/TCR clonality evaluation in clinical pathology. J. Hematop. 2012, 5, 17–25. [Google Scholar] [CrossRef]
- Lowman, G.M.; Pastushok, L.; Mochoruk, K.; Hill, W.; Toro, M.; Pickle, L.; Gonzalez, C.; Ostresh, S.; Sarda, S.; Yang, C.; et al. Evaluation of multiple myeloma research samples by analysis of B cell heavy and light chain receptors in a single NGS assay. Cancer Res. 2022, 82 (Suppl. S12), 2293. [Google Scholar] [CrossRef]
- Lowman, G.; Pastushok, L.; Mochoruk, K.; Hill, W.; Toro, M.; Pickle, L.; Gonzalez, C.; Ostresh, S.; Sarda, S.; Yang, C.; et al. Immune Repertoire Analysis of Multiple Myeloma Research Samples Using NGS Characterization of Multiple B Cell Receptors in a Single Reaction. Blood 2021, 138, 1881. [Google Scholar] [CrossRef]
- Lowman, G.M.; Toro, M.; Pickle, L.; Ostresh, S.; Sarda, S.; Yang, C. NGS characterization of multiple immune receptors from a single multiplex PCR reaction. Cancer Res. 2021, 81 (Suppl. S13), 2779. [Google Scholar] [CrossRef]
- Pastushok, L.; Sarda, S.; Mochoruk, K.; Hill, W.; Pickle, L.T.; Toro, M.; Gonzalez, C.; Ostresh, S.; Looney, T.J.; Yang, C.; et al. A Novel Single-Tube Next Generation Sequencing Assay for B-Cell Receptor Clonality Testing. J. Mol. Pathol. 2024, 5, 45–65. [Google Scholar] [CrossRef]
- Seitz, V.; Gennermann, K.; Elezkurtaj, S.; Groth, D.; Schaper, S.; Dröge, A.; Lachmann, N.; Berg, E.; Lenze, D.; Kühl, A.; et al. Specific T-cell receptor beta-rearrangements of gluten-triggered CD8(+) T-cells are enriched in celiac disease patients’ duodenal mucosa. Clin. Immunol. 2023, 256, 109795. [Google Scholar] [CrossRef]
- Van der Straeten, J.; De Brouwer, W.; Kabongo, E.; Dresse, M.F.; Fostier, K.; Schots, R.; Van Riet, I.; Bakkus, M. Validation of a PCR-Based Next-Generation Sequencing Approach for the Detection and Quantification of Minimal Residual Disease in Acute Lymphoblastic Leukemia and Multiple Myeloma Using gBlocks as Calibrators. J. Mol. Diagn. 2021, 23, 599–611. [Google Scholar] [CrossRef]
- Ho, C.C.; Tung, J.K.; Zehnder, J.L.; Zhang, B.M. Validation of a Next-Generation Sequencing-Based T-Cell Receptor Gamma Gene Rearrangement Diagnostic Assay: Transitioning from Capillary Electrophoresis to Next-Generation Sequencing. J. Mol. Diagn. 2021, 23, 805–815. [Google Scholar] [CrossRef]
- Martin, A.; Chahwan, R.; Parsa, J.Y.; Scharff, M.D. Chapter 20—Somatic Hypermutation: The Molecular Mechanisms Underlying the Production of Effective High-Affinity Antibodies. In Molecular Biology of B Cells, 2nd ed.; Alt, F.W., Honjo, T., Radbruch, A., Reth, M., Eds.; Academic Press: London, UK, 2015; pp. 363–388. [Google Scholar]
- Nouri, N.; Kleinstein, S.H. Somatic hypermutation analysis for improved identification of B cell clonal families from next-generation sequencing data. PLoS Comput. Biol. 2020, 16, e1007977. [Google Scholar] [CrossRef]
- Lefranc, M.P. IMGT databases, web resources and tools for immunoglobulin and T cell receptor sequence analysis, https://imgt.cines.fr. Leukemia 2003, 17, 260–266. [Google Scholar] [CrossRef]
- Xu-Monette, Z.Y.; Li, J.; Xia, Y.; Crossley, B.; Bremel, R.D.; Miao, Y.; Xiao, M.; Snyder, T.; Manyam, G.C.; Tan, X.; et al. Immunoglobulin somatic hypermutation has clinical impact in DLBCL and potential implications for immune checkpoint blockade and neoantigen-based immunotherapies. J. Immunother Cancer 2019, 7, 272. [Google Scholar] [CrossRef]
- Gupta, S.K.; Viswanatha, D.S.; Patel, K.P. Evaluation of Somatic Hypermutation Status in Chronic Lymphocytic Leukemia (CLL) in the Era of Next Generation Sequencing. Front. Cell Dev. Biol. 2020, 8, 357. [Google Scholar] [CrossRef]
- Hauwel, M.; Matthes, T. Minimal residual disease monitoring: The new standard for treatment evaluation of haematological malignancies? Swiss Med. Wkly. 2014, 144, w13907. [Google Scholar] [CrossRef]
- Fischbach, W.; Goebeler, M.E.; Ruskone-Fourmestraux, A.; Wündisch, T.; Neubauer, A.; Raderer, M.; Savio, A. Most patients with minimal histological residuals of gastric MALT lymphoma after successful eradication of can be managed safely by a watch and wait strategy: Experience from a large international series. Gut 2007, 56, 1685–1687. [Google Scholar] [CrossRef]
- Kiesewetter, B.; Simonitsch-Klupp, I.; Dolak, W.; Mayerhoefer, M.E.; Raderer, M. Depth of Remission Following First-Line Treatment Is an Independent Prognostic Marker for Progression-Free Survival in Gastric Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma. Cancers 2020, 12, 492. [Google Scholar] [CrossRef] [PubMed]
- Copie-Bergman, C.; Wotherspoon, A.C.; Capella, C.; Motta, T.; Pedrinis, E.; Pileri, S.A.; Bertoni, F.; Conconi, A.; Zucca, E.; Ponzoni, M.; et al. Gela histological scoring system for post-treatment biopsies of patients with gastric MALT lymphoma is feasible and reliable in routine practice. Br. J. Haematol. 2013, 160, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, C. Low-grade gastric MALT lymphoma as a second malignancy in chronic lymphocytic leukaemia. Br. J. Haematol. 2000, 108, 660–661. [Google Scholar] [CrossRef]
- Wündisch, T.; Dieckhoff, P.; Greene, B.; Thiede, C.; Wilhelm, C.; Stolte, M.; Neubauer, A. Second cancers and residual disease in patients treated for gastric mucosa-associated lymphoid tissue lymphoma by Helicobacter pylori eradication and followed for 10 years. Gastroenterology 2012, 143, 936–942, quiz e13-4. [Google Scholar] [CrossRef]
- Schuster, S.C. Next-generation sequencing transforms today’s biology. Nat. Methods 2008, 5, 16–18. [Google Scholar] [CrossRef]
- Shendure, J.; Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 2008, 26, 1135–1145. [Google Scholar] [CrossRef]
- Pereira, M.I.; Medeiros, J.A. Role of Helicobacter pylori in gastric mucosa-associated lymphoid tissue lymphomas. World J. Gastroenterol. 2014, 20, 684–698. [Google Scholar] [CrossRef] [PubMed]
- Floch, P.; Megraud, F.; Lehours, P. Helicobacter pylori Strains and Gastric MALT Lymphoma. Toxins 2017, 9, 132. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Y.; Zhang, X.; Fu, K. Gastric mucosa-associated lymphoid tissue lymphoma and Helicobacter pylori infection: A review of current diagnosis and management. Biomark. Res. 2016, 4, 15. [Google Scholar] [CrossRef]
- Wotherspoon, A.C.; Ortiz-Hidalgo, C.; Falzon, M.R.; Isaacson, P.G. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet 1991, 338, 1175–1176. [Google Scholar] [CrossRef]
- Gu, S.X.; Siddon, A.J.; Huntington, S.F.; Jain, D. Helicobacter pylori-negative mucosa-associated lymphoid tissue (MALT) lymphoma of the stomach: A clinicopathologic analysis. Am. J. Clin. Pathol. 2023, 160, 612–619. [Google Scholar] [CrossRef]
- Neubauer, A.; Thiede, C.; Alpen, B.; Ritter, M.; Neubauer, B.; Ehninger, G.; Morgner, A.; Bayerdörffer, E.; Wündisch, T.; Stolte, M. Cure of Helicobacter pylori infection and duration of remission of low-grade gastric mucosa-associated lymphoid tissue lymphoma. J. Natl. Cancer Inst. 1997, 89, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
Patient (Age) | Sample | Date of Sampling | Initial Diagnosis | Sample Site | H. pylori | Other Manifestations | G-MALT Therapy | BM Infiltration | Relapse Comments |
---|---|---|---|---|---|---|---|---|---|
Patient A (41) | 2003/01 | 21.01.2003 | 21.01.2003 | Gastric mucosa | N | Stomach, ileum, mesentery, lung | 2010—Field radiation (stomach and gastric lymph nodes) | No | 1st relapse 26.11.2010 |
2003/02 | 28.01.2003 | Gastric mucosa | |||||||
2010/01 | 18.05.2010 | Colon mucosa | |||||||
2010/02 | 26.11.2010 | Gastric mucosa | |||||||
2013/01 | 11.12.2013 | Gastric mucosa | 2nd relapse 11.12.2017 | ||||||
2017/01 | 04.12.2017 | Colon mucosa | |||||||
2017/02 | 27.12.2017 | Lung | |||||||
Patient B (66) | 2001/01 | 08.08.2001 | 14.06.2001 | Gastric mucosa | N | Stomach | Chemotherapy, NOS | No | 1st relapse 21.03.2002 from then on MRD+ until 2009 |
2001/02 | 22.08.2001 | Ileum and colon mucosa | |||||||
2001/03 | 12.11.2001 | Gastric mucosa | |||||||
2002/01 | 11.10.2002 | Gastric mucosa | |||||||
2004/01 | 29.09.2004 | Gastric mucosa | |||||||
2006/01 | 23.08.2006 | Gastric mucosa | |||||||
2009/01 | 23.03.2009 | Colon mucosa | |||||||
2010/01 | 08.07.2010 | Gastric mucosa | |||||||
Patient C (65) | 2003/01 | 16.10.2003 | 16.10.2003 | Gastric mucosa | N | Stomach, Coecum | 12/03–02/04 chemotherapy: 8× R-CHOP | Yes | - |
2004/01 | 26.07.2004 | Gastric mucosa | |||||||
2005/01 | 24.08.2005 | Gastric mucosa | |||||||
2006/01 | 03.07.2006 | Ileum and colon mucosa | 08/06–02/07 chemotherapy; 6× R-Bendamustine 2006 | ||||||
2007/01 | 26.10.2007 | Duodenum and gastric mucosa | |||||||
2009/01 | 26.05.2009 | Duodenum and gastric mucosa | |||||||
2011/01 | 26.01.2011 | Gastric mucosa | |||||||
2014/01 | 07.03.2014 | Gastric mucosa | |||||||
2019/01 | 03.09.2019 | Gastric mucosa | |||||||
Patient D (58) | 2008/01 | 09.06.2008 | 14.04.2008 | Ileum and colon mucosa (MZL) | Initially N, switch to P in 2008 | Stomach, ileum, colon, jugular lymph node | 2008: Effective antibiotic therapy against Helicobacter pylori | B-CLL: Yes | Relapse 08.09.2010 |
2009/01 | 18.03.2009 | Gastric mucosa (MZL) | |||||||
2009/02 | 02.12.2009 | Gastric mucosa (MZL) | |||||||
2011/01 | 07.07.2011 | Blood (both MZL and CLL) | |||||||
Patient E (52) | 2004/01 | 23.08.2004 | 23.08.2004 | Gastric mucosa | N | Stomach | Resection (2/3 gastrectomy 2006) | No | 1st relapse 12.05.2005 |
2004/02 | 08.11.2004 | Gastric mucosa | 2nd relapse 13.11.2007 | ||||||
2008/01 | 05.02.2008 | Ileum mucosa | |||||||
Patient F (55) | 2017/01 | 15.06.2017 | 01.08.1989 | Colon mucosa | N | Stomach, sigma, liver | At initial diagnosis: COP (Cyclophosphamide, Vincristine, Prednisolone 3 cycles) | No | 1st relapse 01.02.2017 |
2017/02 | 16.06.2017 | Gastric mucosa | |||||||
2017/03 | 30.06.2017 | Colon mucosa | Chlorambucil and Prednisolone 7 cycles | ||||||
2017/04 | 30.11.2017 | Gastric mucosa | 1st relapse (1st relapse 01.02.2017): 4x Rituximab | ||||||
2022/01 | 25.04.2022 | Colon mucosa | 2nd relapse (2nd relapse 01.04.2022): Rituximab |
Patient (Gender) | Samples Analyzed | Lymphoma Diagnosed (Histology) | IGH NGS Clonality | IGL NGS Clonality |
---|---|---|---|---|
Patient A (Female) | 2003/01 | + | Clonal/bi-allelic | Clonal |
2003/02 | + | Clonal/bi-allelic | Clonal | |
2010/01 | − | Polyclonal | Polyclonal | |
2010/02 | + | Clonal/bi-allelic | Clonal | |
2013/01 | − | n.d. | Clonal | |
2017/01 | − | n.d. | Clonal | |
2017/02 | + | Clonal | Clonal | |
Patient B (Female) | 2001/01 | + | Oligoclonal | Clonal |
2001/02 | − | Oligoclonal | Polyclonal | |
2001/03 | − | Clonal | Clonal | |
2002/01 | + | Clonal | Clonal | |
2004/01 | + | Clonal | Clonal | |
2006/01 | + | Clonal | Clonal | |
2009/01 | − | n.d. | Clonal | |
2010/01 | − | n.d. | Polyclonal | |
Patient C (Male) | 2003/01 | + | Clonal | Clonal |
2004/01 | + | Oligoclonal | Clonal | |
2005/01 | − | Oligoclonal | Clonal | |
2006/01 | − | Oligoclonal | Clonal | |
2007/01 | − | Oligoclonal | Clonal | |
2009/01 | − | Oligoclonal | Clonal | |
2011/01 | − | Oligoclonal | Clonal | |
2014/01 | − | Clonal | Clonal | |
2019/01 | − | Polyclonal | Polyclonal | |
Patient D (Female) | 2008/01 | − | Clonal | Clonal |
2009/01 | + | n.d. | Clonal | |
2009/02 | + | Clonal | Clonal | |
2011/01 | + | Clonal | Clonal | |
Patient E (Male) | 2004/01 | + | Oligoclonal | Clonal |
2004/02 | − | Clonal | Clonal | |
2008/01 | − | Polyclonal | Clonal | |
Patient F (Female) | 2017/01 | − | Clonal | Clonal |
2017/02 | + | Clonal | Clonal | |
2017/03 | − | Oligoclonal | Clonal | |
2017/04 | + | Clonal | Clonal | |
2022/01 | + | Clonal | Clonal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akpa, C.A.; Husemann, C.; Allen, C.; von Brünneck, A.-C.; Ihlow, J.; Hummel, M. Next-Generation-Sequencing of the Human B-Cell Receptor Improves Detection and Diagnosis and Enhances Disease Monitoring in Patients with Gastric Mucosa-Associated Lymphoid Tissue Lymphoma. J. Mol. Pathol. 2024, 5, 292-303. https://doi.org/10.3390/jmp5030021
Akpa CA, Husemann C, Allen C, von Brünneck A-C, Ihlow J, Hummel M. Next-Generation-Sequencing of the Human B-Cell Receptor Improves Detection and Diagnosis and Enhances Disease Monitoring in Patients with Gastric Mucosa-Associated Lymphoid Tissue Lymphoma. Journal of Molecular Pathology. 2024; 5(3):292-303. https://doi.org/10.3390/jmp5030021
Chicago/Turabian StyleAkpa, Chidimma Agatha, Cora Husemann, Chris Allen, Ann-Christin von Brünneck, Jana Ihlow, and Michael Hummel. 2024. "Next-Generation-Sequencing of the Human B-Cell Receptor Improves Detection and Diagnosis and Enhances Disease Monitoring in Patients with Gastric Mucosa-Associated Lymphoid Tissue Lymphoma" Journal of Molecular Pathology 5, no. 3: 292-303. https://doi.org/10.3390/jmp5030021
APA StyleAkpa, C. A., Husemann, C., Allen, C., von Brünneck, A. -C., Ihlow, J., & Hummel, M. (2024). Next-Generation-Sequencing of the Human B-Cell Receptor Improves Detection and Diagnosis and Enhances Disease Monitoring in Patients with Gastric Mucosa-Associated Lymphoid Tissue Lymphoma. Journal of Molecular Pathology, 5(3), 292-303. https://doi.org/10.3390/jmp5030021