Development of a New Treatment for Lung Diseases, Mainly Interstitial Pneumonia, Using Platinum-Palladium: A Pilot Study
Abstract
1. Introduction
- Idiopathic interstitial pneumonia
- Autoimmune interstitial pneumonia
- Drug-induced interstitial pneumonia
- Occupational/environmental interstitial pneumonia (hypersensitivity pneumonitis)
- Interstitial pneumonia caused by other factors
2. Materials and Methods: A Case of Interstitial Pneumonia Improved
2.1. Patient
- -
- 90-year-old male.
- -
- Height 172.3 cm, weight 68.3 kg, body surface area 1800 m2.
- -
- Smoking history: None.
- -
- Diagnosis: Interstitial pneumonia.
- -
- Age at onset of interstitial pneumonia: 85 years old (as of 2020)
- -
- Underlying diseases: None.
- -
- Platinum-palladium intake: 18 mL/day (6 mL/1 vial × 3 vials).
- -
- Duration: 44 months.
- -
- Drug treatment: None.
- -
- Oxygen inhalation: None.
2.2. Progress
3. Measurements at In Vitro and In Vivo Levels
3.1. AMPK Measurement
3.2. Measurement of Blood KL-6
3.3. Measurement of Blood Hydrogen Peroxide (Figure 3)
3.4. Study on the Effect of Platinum-Palladium on Symptom Improvement in Patients with Interstitial Pneumonia
4. Results
4.1. AMPK Measurement
4.2. Measurement of Blood KL-6
4.3. Measurement of Blood Hydrogen Peroxide
4.4. Investigation into the Effectiveness of Platinum-Palladium in Improving
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamb, Y.N. Nintedanib: A Review in Fibrotic Interstitial Lung Diseases [published correction appears in Drugs. Drugs 2021, 81, 575–586. [Google Scholar] [CrossRef]
- Renzoni, E.A.; Poletti, V.; Mackintosh, J.A. Disease pathology in fibrotic interstitial lung disease: Is it all about usual interstitial pneumonia? Lancet 2021, 398, 1437–1449. [Google Scholar] [CrossRef]
- Graney, B.A.; Fischer, A. Interstitial Pneumonia with Autoimmune Features. Ann. Am. Thorac. Soc. 2019, 16, 525–533. [Google Scholar] [CrossRef]
- Reynolds, C.; Feary, J.; Cullinan, P. Occupational Contributions to Interstitial Lung Disease. Clin. Chest Med. 2020, 41, 697–707. [Google Scholar] [CrossRef]
- Vourlekis, J.S. Acute interstitial pneumonia. Clin. Chest Med. 2004, 25, 739–747, vii. [Google Scholar] [CrossRef]
- Belloli, E.A.; Beckford, R.; Hadley, R.; Flaherty, K.R. Idiopathic non-specific interstitial pneumonia. Respirology 2016, 21, 259–268. [Google Scholar] [CrossRef]
- American Thoracic Society; European Respiratory Society. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am. J. Respir. Crit. Care Med. 2002, 165, 277–304. [Google Scholar]
- Maher, T.M.; Wuyts, W. Management of Fibrosing Interstitial Lung Diseases. Adv. Ther. 2019, 36, 1518–1531. [Google Scholar] [CrossRef]
- akahashi, H.; Fujishima, T.; Koba, H.; Murakami, S.; Kurokawa, K.; Shibuya, Y.; Shiratori, M.; Kuroki, Y.; Abe, S. Serum surfactant proteins A and D as prognostic factors in idiopathic pulmonary fibrosis and their relationship to disease extent. Am. J. Respir. Crit. Care Med. 2000, 162 Pt 1, 1109–1114. [Google Scholar] [CrossRef]
- Chiba, H.; Otsuka, M.; Takahashi, H. Significance of molecular biomarkers in idiopathic pulmonary fibrosis: A mini review. Respir. Investig. 2018, 56, 384–391. [Google Scholar] [CrossRef]
- Brasch, F. Interstitial pulmonary diseases. Pathologe 2006, 27, 116–132. [Google Scholar] [CrossRef]
- Wong, A.W.; Ryerson, C.J.; Guler, S.A. Progression of fibrosing interstitial lung disease. Respir. Res. 2020, 21, 32. [Google Scholar] [CrossRef]
- Turino, G.M. TURIN: Natural History and Clinical Management of Emphysema in Patients with and without Alpha1-Antitrypsin Inhibitor Deficiency. Ann. N.Y. Acad. Sci. 1991, 624, 18–29. [Google Scholar] [CrossRef]
- Tashkin, D.P.; Detels, R.; Simmons, M.; Liu, H.; Coulson, A.H.; Sayre, J.; Rokaw, S. The UCLA population studies of chronic obstructive respiratory disease. XI. Impact of air pollution and smoking an annual change in forced expiratory volume in one second. Am. J. Respir. Crit. Care Med. 1994, 149, 1209–1217. [Google Scholar] [CrossRef]
- Stoller, J.K.; Panos, R.J.; Krachman, S.; Doherty, D.E.; Make, B.; Long-term Oxygen Treatment Trial Research Group. Oxygen therapy for patients with COPD: Current evidence and the long-term oxygen treatment trial. Chest 2010, 138, 179–187. [Google Scholar] [CrossRef]
- World Health Organization. World Health Statistics 2010; World Health Organization: Geneva, Switzerland, 2010; Available online: https://scholar.google.com/scholar?hl=en&q=Organization+WH.+World+health+statistics+2010.+World+Health+Organization%2C+Geneva%2C+2010 (accessed on 8 June 2022).
- Young, R.P.; Hopkins, R.J.; Christmas, T.; Black, P.N.; Metcalf, P.; Gamble, G.D. COPD prevalence is increased in lung cancer, independent of age, sex and smoking history. Eur. Respir. J. 2009, 34, 380–386. [Google Scholar] [CrossRef]
- Fischer, B.M.; Voynow, J.A.; Ghio, A.J. COPD: Balancing oxidants and antioxidants. Int. J. Chron. Obstruct. Pulmon. Dis. 2015, 10, 261–276. [Google Scholar] [CrossRef]
- Moreira-Pais, A.; Ferreira, R.; da Costa, R.G. Platinum-induced muscle wasting in cancer chemotherapy: Mechanisms and potential targets for therapeutic intervention. Life Sci. 2018, 208, 1–9. [Google Scholar] [CrossRef]
- Katarzyna, M.; Anna, S.; Zielinska-Blizniewska, H.; Ireneusz, M. An Evaluation of the Antioxidant and Anticancer Properties of Complex Compounds of Copper (II), Platinum (II), Palladium (II) and Ruthenium (III) for Use in Cancer Therapy. Mini-Rev. Med. Chem. 2018, 18, 1373–1381. [Google Scholar] [CrossRef]
- Lee, S.J.; Yu, Y.; Jung, H.J.; Naik, S.S.; Yeon, S.; Choi, M.Y. Efficient recovery of palladium nanoparticles from industrial wastewater and their catalytic activity toward reduction of 4-nitrophenol. Chemosphere 2021, 262, 128358. [Google Scholar] [CrossRef]
- Ucar, Y.; Brantley, W.A.; Bhattiprolu, S.N.; Johnston, W.M.; McGlumphy, E.A. Characterization of cast-to implant components from five manufacturers. J. Prosthet. Dent. 2009, 102, 216–223. [Google Scholar] [CrossRef]
- Okamoto, H.; Horii, K.; Fujisawa, A.; Yamamoto, Y. Oxidative deterioration of platinum nanoparticle and its prevention by palladium. Exp. Dermatol. 2012, 21, 5–7. [Google Scholar] [CrossRef]
- Shibuya, S.; Ozawa, Y.; Watanabe, K.; Izuo, N.; Toda, T.; Yokote, K.; Shimizu, T. Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS ONE 2014, 9, e109288. [Google Scholar] [CrossRef]
- Kawakami, S.; Ichikawa, H.; Sato, T.; Kataoka, H.; Ide, T.; Terayama, H.; Sakabe, K. Antioxidant ability of platinum-palladium-Study using soft drinks containing platinum-palladium-. J. Jpn. Soc. Oral Funct. Water 2021, 22, 3–9. [Google Scholar]
- Yang, B.; Chen, Y.; Shi, J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem. Rev. 2019, 119, 4881–4985. [Google Scholar] [CrossRef]
- Binks, S.P.; Dobrota, M. Kinetics and mechanism of uptake of platinum-based pharmaceuticals by the rat small intestine. Biochem. Pharmacol. 1990, 40, 1329–1336. [Google Scholar] [CrossRef]
- Sable, V.; Maindan, K.; Kapdi, A.R.; Shejwalkar, P.S.; Hara, K. Active Palladium Colloids via Palladacycle Degradation as Efficient Catalysts for Oxidative Homocoupling and Cross-Coupling of Aryl Boronic Acids. ACS Omega 2017, 2, 204–217. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, E.Y.; Ha, Y.J.; Kang, E.H.; Lee, Y.J.; Song, Y.W. Serum KL-6 levels reflect the severity of interstitial lung disease associated with connective tissue disease. Arthritis Res Ther. 2019, 21, 58. [Google Scholar] [CrossRef]
- Song, X.; Bai, S.; He, N.; Wang, R.; Xing, Y.; Lv, C.; Yu, F. Real-Time Evaluation of Hydrogen Peroxide Injuries in Pulmonary Fibrosis Mice Models with a Mitochondria-Targeted Near-Infrared Fluorescent Probe. ACS Sens. 2021, 6, 1228–1239. [Google Scholar] [CrossRef]
- Sakuraba, N.; Togami, Y. Fundamental and clinical evaluation of KL—6 measurement by chemiluminescent enzyme immunoassay system “Lumipulse Presto KL—6 Eisai”. Jpn. J. Med. Pharm. Sci. 2009, 61, 629–635. (In Japanese) [Google Scholar]
- Ogihara, T.; Hirano, K.; Morinobu, T.; Ogawa, S.; Hiroi, M.; Ban, R.; Ogihara, H.; Tamai, H. KL-6, a mucinous glycoprotein, as an indicator of chronic lung disease of the newborn. J. Pediatr. 2000, 137, 280–282. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Venardos, K.; Chin-Dusting, J.; Kaye, D.M. Adverse effects of cigarette smoke on NO bioavailability: Role of arginine metabolism and oxidative stress. Hypertension 2006, 48, 278–285. [Google Scholar] [CrossRef]
- Mittler, R. ROS Are Good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Carling, D. AMPK signalling in health and disease. Curr. Opin. Cell Biol. 2017, 45, 31–37. [Google Scholar] [CrossRef]
- Boyer, P.D.; Chance, B.; Ernster, L.; Mitchell, P.; Racker, E.; Slater, E.C. Oxidative phosphorylation and photophosphorylation. Annu. Rev. Biochem. 1977, 46, 955–1026. [Google Scholar] [CrossRef]
- Cool, B.; Zinker, B.; Chiou, W.; Kifle, L.; Cao, N.; Perham, M.; Dickinson, R.; Adler, A.; Gagne, G.; Iyengar, R.; et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006, 3, 403–416. [Google Scholar] [CrossRef]
- Giordanetto, F.; Karis, D. Direct AMP-activated protein kinase activators: A review of evidence from the patent literature. Expert Opin. Ther. Pat. 2012, 22, 1467–1477. [Google Scholar] [CrossRef]
- Xiao, B.; Sanders, M.J.; Carmena, D.; Bright, N.J.; Haire, L.F.; Underwood, E.; Patel, B.R.; Heath, R.B.; Walker, P.A.; Hallen, S.; et al. Structural basis of AMPK regulation by small molecule activators. Nat. Commun. 2013, 4, 3017. [Google Scholar] [CrossRef]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135. [Google Scholar] [CrossRef]
- Mihaylova, M.M.; Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biol. 2011, 13, 1016–1023. [Google Scholar] [CrossRef]
- Russell, F.M.; Hardie, D.G. AMP-Activated Protein Kinase: Do We Need Activators or Inhibitors to Treat or Prevent Cancer? Int. J. Mol. Sci. 2020, 22, 186. [Google Scholar] [CrossRef]
- Wu, S.; Zou, M.H. AMPK, Mitochondrial Function, and Cardiovascular Disease. Int. J. Mol. Sci. 2020, 21, 4987. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, W.; Sun, X.; Xu, D.; Wang, C.; Zhang, Q.; Wang, H.; Luo, W.; Chen, Y.; Chen, H.; et al. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy 2016, 12, 1447–1459. [Google Scholar] [CrossRef]
- Bergeron, R.; Ren, J.M.; Cadman, K.S.; Moore, I.K.; Perret, P.; Pypaert, M.; Young, L.H.; Semenkovich, C.F.; Shulman, G.I. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E1340–E1346. [Google Scholar] [CrossRef]
- Hwang, J.H.; Kim, Y.-H.; Noh, J.-R.; Choi, D.-H.; Kim, K.-S.; Lee, C.-H. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury. Mol. Cells 2015, 38, 843–850. [Google Scholar] [CrossRef]
- Hardie, D.G.; Schaffer, B.E.; Brunet, A. AMPK: An energy-sensing pathway with multiple inputs and out-puts. Trends Cell Biol. 2016, 26, 190–201. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Li, Y.Y.; Huang, C.; Li, J.; Yao, H.W. AMP-activated protein kinase reduces inflammatory responses and cellular senescence in pulmonary emphysema. Oncotarget 2017, 8, 22513–22523. [Google Scholar] [CrossRef]
- Osaka, A.; Yanagihara, K.; Yamada, Y.; Hasegawa, H.; Inokuchi, N.; Hayashi, T.; Komoda, M.; Nakamura, S.; Aoyama, M.; Sawada, T.; et al. Elevation of serum KL-6 glycoprotein or surfactant protein-D in adult T-cell leukemia with distinct pulmonary complications. Tohoku J. Exp. Med. 2009, 218, 99–105. [Google Scholar] [CrossRef]
- Okamoto, T.; Fujii, M.; Furusawa, H.; Tsuchiya, K.; Miyazaki, Y.; Inase, N. The usefulness of KL-6 and SP-D for the diagnosis and management of chronic hypersensitivity pneumonitis. Respir. Med. 2015, 109, 1576–1581. [Google Scholar] [CrossRef]
- Kubota, M.; Haruta, T. The role of serum KL-6 measurement in common pediatric respiratory infections. J. Infect. Chemother. 2006, 12, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kaminski, N. Biomarkers in idiopathic pulmonary fibrosis. Curr. Opin. Pulm. Med. 2012, 18, 441–446. [Google Scholar] [CrossRef] [PubMed]
- d’Alessandro, M.; Bergantini, L.; Cameli, P.; Pieroni, M.; Refini, R.M.; Sestini, P.; Bargagli, E. Serum Concentrations of KL-6 in Patients with IPF and Lung Cancer and Serial Measurements of KL-6 in IPF Patients Treated with Antifibrotic Therapy. Cancers 2021, 13, 689. [Google Scholar] [CrossRef]
- Miyazaki, K.; Kurishima, K.; Kagohashi, K.; Kawaguchi, M.; Ishikawa, H.; Satoh, H.; Hizawa, N. Serum KL-6 levels in lung cancer patients with or without interstitial lung disease. J. Clin. Lab. Anal. 2010, 24, 295–299. [Google Scholar] [CrossRef]
- Knaus, U.G. Oxidants in Physiological Processes. Handb. Exp. Pharmacol. 2021, 264, 27–47. [Google Scholar] [PubMed]
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef]
- Watt, B.E.; Proudfoot, A.T.; Vale, J.A. Hydrogen peroxide poisoning. Toxicol. Rev. 2004, 23, 51–57. [Google Scholar] [CrossRef]
- van der Vliet, A.; Janssen-Heininger, Y.M. Hydrogen peroxide as a damage signal in tissue injury and inflammation: Murderer, mediator, or messenger? J. Cell Biochem. 2014, 115, 427–435. [Google Scholar] [CrossRef]
- Tang, B.L. Glucose, glycolysis, and neurodegenerative diseases. J. Cell Physiol. 2020, 235, 7653–7662. [Google Scholar] [CrossRef]
- Judge, A.; Dodd, M.S. Metabolism. Essays Biochem. 2020, 64, 607–647. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare. Reactive Oxygen Species and Oxidative Stress; Ministry of Health, Labour and Welfare: Tokyo, Japan. (In Japanese)
- Beck-Schimmer, B.; Bonvini, J.M. Bronchoaspiration: Incidence, consequences and management. Eur. J. Anaesthesiol. 2011, 28, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: Role and Response of Short Guanine Tracts at Genomic Locations. Int. J. Mol. Sci. 2019, 20, 4258. [Google Scholar] [CrossRef]
- Madreiter-Sokolowski, C.T.; Thomas, C.; Ristow, M. Interrelation between ROS and Ca in aging and age-related diseases. Redox Biol. 2020, 36, 101678. [Google Scholar] [CrossRef]
- Moore, M.N. Autophagy as a second level protective process in conferring resistance to environmentally-induced oxidative stress. Autophagy 2008, 4, 254–256. [Google Scholar] [CrossRef] [PubMed]
- Calimport, S.R.G.; Bentley, B.L. Aging Classified as a Cause of Disease in ICD-11. Rejuvenation Res. 2019, 22, 281. [Google Scholar] [CrossRef]
- Nagaraja, C.; Shashibhushan, B.L.; Sagar; Asif, M.; Manjunath, P.H. Hydrogen peroxide in exhaled breath condensate: A clinical study. Lung India 2012, 29, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 2016, 100, 14–31. [Google Scholar] [CrossRef]
- Ramírez-Prieto, M.T.; García-Río, F.; Villamor, J. Role of oxidative stress in respiratory diseases and its monitoring. Med. Clin. 2006, 127, 386–396. [Google Scholar] [CrossRef]
1 h | 12 h | 24 h | |||
---|---|---|---|---|---|
Cnt | Pt:Pd | Cnt | Pt:Pd | Cnt | Pt:Pd |
100% | 809.80% | 100% | 763.92% | 100% | 886.74% |
Case No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before | 583 | 276 | 509 | 253 | 679 | 268 | 321 | 224 | 726 | 137 | 103 | 674 | 168 | 787 | 752 | 89 |
After | 351 | 203 | 367 | 272 | 474 | 315 | 298 | 205 | 622 | 171 | 189 | 422 | 193 | 525 | 473 | 91 |
Case No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Before | 284 | 243 | 368 | 311 | 307 | 267 | 363 | 307 | 311 | 240 | 289 | 297 |
After | 250 | 224 | 282 | 212 | 314 | 206 | 247 | 274 | 279 | 206 | 295 | 283 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawakami, S.; Shirakawa, T.; Wajima, S.; Segawa, Y.; Fukuzawa, Y.; Sakabe, K. Development of a New Treatment for Lung Diseases, Mainly Interstitial Pneumonia, Using Platinum-Palladium: A Pilot Study. J. Respir. 2025, 5, 10. https://doi.org/10.3390/jor5030010
Kawakami S, Shirakawa T, Wajima S, Segawa Y, Fukuzawa Y, Sakabe K. Development of a New Treatment for Lung Diseases, Mainly Interstitial Pneumonia, Using Platinum-Palladium: A Pilot Study. Journal of Respiration. 2025; 5(3):10. https://doi.org/10.3390/jor5030010
Chicago/Turabian StyleKawakami, Satoshi, Taro Shirakawa, Shoichi Wajima, Yusuke Segawa, Yoshitaka Fukuzawa, and Kou Sakabe. 2025. "Development of a New Treatment for Lung Diseases, Mainly Interstitial Pneumonia, Using Platinum-Palladium: A Pilot Study" Journal of Respiration 5, no. 3: 10. https://doi.org/10.3390/jor5030010
APA StyleKawakami, S., Shirakawa, T., Wajima, S., Segawa, Y., Fukuzawa, Y., & Sakabe, K. (2025). Development of a New Treatment for Lung Diseases, Mainly Interstitial Pneumonia, Using Platinum-Palladium: A Pilot Study. Journal of Respiration, 5(3), 10. https://doi.org/10.3390/jor5030010