Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,398)

Search Parameters:
Keywords = hydrogen peroxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2073 KB  
Article
Electrochemical Behavior and Cytocompatibility of Titanium Dental Implants Under Different Chemical Treatments
by Alexandra-Camelia Pogacian-Maier, Radu Septimiu Campian, Alexandru Mester, Marioara Moldovan, Ioan Petean, Emoke Pall, Simona Varvara, Andra Piciu and Dragos Ene
Biomedicines 2025, 13(10), 2457; https://doi.org/10.3390/biomedicines13102457 (registering DOI) - 9 Oct 2025
Abstract
Background: This study aimed to evaluate the impact of different chemical treatments on titanium implant surfaces and their biological compatibility. Methods: Titanium dental implants were immersed in Ringer’s solution, hydrogen peroxide (3%), citric acid (40%), EDTA (40%), or a citric–phosphoric acid mixture. Electrochemical [...] Read more.
Background: This study aimed to evaluate the impact of different chemical treatments on titanium implant surfaces and their biological compatibility. Methods: Titanium dental implants were immersed in Ringer’s solution, hydrogen peroxide (3%), citric acid (40%), EDTA (40%), or a citric–phosphoric acid mixture. Electrochemical behavior was analyzed using open-circuit potential monitoring and electrochemical impedance spectroscopy over 168 h. Cytocompatibility was assessed by culturing human gingival mesenchymal stem cells (MSCs) directly on treated implants and in conditioned media, followed by viability evaluation through CCK-8 assays. Results: Citric acid and Ringer’s solution preserved passive film stability and supported high MSC viability (>75%) with minimal cytotoxic effects. Hydrogen peroxide and the citric–phosphoric acid mixture caused pronounced surface corrosion, decreased impedance stability, and significantly reduced cell viability (57–65%). EDTA-treated surfaces showed intermediate results, with moderate viability but impaired cell adhesion. Conclusion: The findings highlight the dual influence of chemical decontamination on implant stability and biological response. Citric acid and Ringer’s solution appear to be safer protocols for surface decontamination, whereas hydrogen peroxide and mixed acid treatments should be applied with caution due to their detrimental electrochemical and cytotoxic effects. Full article
(This article belongs to the Special Issue Feature Reviews in Biomaterials for Oral Diseases)
16 pages, 805 KB  
Review
Environmental Pathogen in Healthcare Settings: Candida auris—The Emerging Threat with a Focus on the Middle East and Infection Control Strategies
by Salma AlBahrani
Microbiol. Res. 2025, 16(10), 221; https://doi.org/10.3390/microbiolres16100221 - 9 Oct 2025
Abstract
The emergence of Candida auris as a disheartening fungal pathogen in healthcare settings has prompted urgent re-evaluation of containment and mitigation strategies. This review critically examines the biological persistence, environmental adaptability, and resistance to standard antifungal therapies of the pathogen, particularly regions with [...] Read more.
The emergence of Candida auris as a disheartening fungal pathogen in healthcare settings has prompted urgent re-evaluation of containment and mitigation strategies. This review critically examines the biological persistence, environmental adaptability, and resistance to standard antifungal therapies of the pathogen, particularly regions with limited surveillance infrastructure. Based on regional experiences, such as those in Saudi Arabia and the Middle East in general, the study reveals systemic weaknesses in diagnosis, reporting, and environmental sanitation. Special consideration is paid to the combination of new disinfection technologies, including ultraviolet irradiation systems and hydrogen peroxide vaporisation, with institutional behaviour change strategies. This discussion shows the importance of synchronising technological development with frequent employee contributions and cross-functional planning. It also encourages the international standardisation of diagnostic platforms and the launch of real-time genomic surveillance to reveal evolutionary trends. Finally, the findings justify the shift towards proactive models of infection control that are founded on the resilience of systems and the agility of institutions. This paper is a synthesis of epidemiological patterns, decontamination strategies and behavioural knowledge to contribute to an emerging body of knowledge that can help to fortify healthcare settings against current fungal threats. Full article
Show Figures

Figure 1

30 pages, 2315 KB  
Review
Progress in NiO Based Materials for Electrochemical Sensing Applications
by Praveen Kumar, Mohammad Aslam, Saood Ali, Khaled Hamdy, Khursheed Ahmad and Danishuddin
Biosensors 2025, 15(10), 678; https://doi.org/10.3390/bios15100678 - 9 Oct 2025
Abstract
Nickel oxide (NiO), a wide bandgap p-type semiconductor, has emerged as a promising material for electrochemical sensing owing to its excellent redox properties, chemical stability, and facile synthesis. Its strong electrocatalytic activity enables effective detection of diverse analytes, including glucose, hydrogen peroxide, environmental [...] Read more.
Nickel oxide (NiO), a wide bandgap p-type semiconductor, has emerged as a promising material for electrochemical sensing owing to its excellent redox properties, chemical stability, and facile synthesis. Its strong electrocatalytic activity enables effective detection of diverse analytes, including glucose, hydrogen peroxide, environmental pollutants, and biomolecules. Advances in nanotechnology have enabled the development of NiO-based nanostructures such as nanoparticles, nanowires, and nanoflakes, which offer enhanced surface area and improved electron transfer. Integration with conductive materials like graphene, carbon nanotubes, and metal–organic frameworks (MOFs) further enhance sensor performance through synergistic effects. Innovations in synthesis techniques, including hydrothermal, sol–gel, and green approaches, have expanded the applicability of NiO in next-generation sensing platforms. This review summarizes recent progress in the structural engineering, composite formation, and electrochemical mechanisms of NiO-based materials for advanced electrochemical sensing applications. Full article
Show Figures

Figure 1

29 pages, 7998 KB  
Article
Tert-Butyl Hydroperoxide in Human Adult Mesenchymal Stem Cells Isolated from Dermis: A Stress-Induced Premature Senescence Model
by Luca Pampanella, Giovannamaria Petrocelli, Provvidenza Maria Abruzzo, Riccardo Tassinari, Beatrice Bassoli, Rossella Sgarzani, Margherita Maioli, Carlo Ventura, Silvia Canaider and Federica Facchin
Cells 2025, 14(19), 1563; https://doi.org/10.3390/cells14191563 (registering DOI) - 8 Oct 2025
Abstract
Stem cell (SC)-based therapy exploits the ability of cells to migrate to damaged tissues and repair them. In this context, there is a strong interest in the use of mesenchymal stem cells (MSCs), multipotent SCs that are easy to obtain and are able [...] Read more.
Stem cell (SC)-based therapy exploits the ability of cells to migrate to damaged tissues and repair them. In this context, there is a strong interest in the use of mesenchymal stem cells (MSCs), multipotent SCs that are easy to obtain and are able to differentiate into various cell lineages. However, MSCs undergo cellular senescence during in vitro expansion, and may also become senescent in vivo, influenced by multiple molecular, cellular, and environmental interactions. Therefore, the development of in vitro cell models is crucial to study the mechanisms underlying senescence in MSCs. This study aimed to investigate the effects of tert-butyl hydroperoxide (t-BHP) as a senescence inducer in human dermal MSCs (hDMSCs), a promising tool for tissue repair. t-BHP induced a pro-senescent effect on hDMSCs greater than hydrogen peroxide (H2O2), as evidenced by ROS production, DNA damage, cell cycle arrest, inhibition of cell proliferation, changes in cellular and nuclear morphology, and cytoskeletal reorganization, as well as the increase in other senescence markers, including senescence-associated β-galactosidase (SA-β-Gal)-positive cells, and senescence-associated secretory phenotype (SASP). These results indicate that t-BHP could be a promising compound for inducing stress-induced premature senescence (SIPS) in hDMSCs, providing a valuable tool to investigate this process and evaluate the efficacy of senolytic compounds. Full article
Show Figures

Figure 1

19 pages, 2022 KB  
Article
Hydrogen Peroxide and Neutrophil Chemotaxis in a Mouse Model of Bacterial Infection
by Hassan O. J. Morad, Larissa Garcia-Pinto, Georgia Clayton, Foad Davoodbeglou, Arturo Monzon and Peter A. McNaughton
Immuno 2025, 5(4), 47; https://doi.org/10.3390/immuno5040047 - 8 Oct 2025
Abstract
Neutrophils are an essential protective component of the innate immune system. However, in severe bacterial infections, neutrophils are known to mis-localise from the primary site of infection to other organs, where excessive release of cytokines, chemokines, and neutrophil extracellular traps (NETs) can induce [...] Read more.
Neutrophils are an essential protective component of the innate immune system. However, in severe bacterial infections, neutrophils are known to mis-localise from the primary site of infection to other organs, where excessive release of cytokines, chemokines, and neutrophil extracellular traps (NETs) can induce organ damage and death. In this study, we use an animal model of bacterial infection originating in the peritoneum to show that hydrogen peroxide (H2O2, a potent neutrophil chemoattractant) is initially released in high concentrations both in the peritoneum and in multiple ‘off-target’ organs (lungs, liver and kidneys). The initial high H2O2 release inhibits neutrophil chemotaxis, but after 24 h concentrations of H2O2 reduce and can promote neutrophil migration to organs, where they release pro-inflammatory cytokines and chemokines along with NETs. The antimalarial compound artesunate potently inhibits neutrophil migration to off-target organs. It also abolishes cytokine, chemokine, and NET production, suggesting that artesunate may be a valuable novel therapy for preventing off-target organ inflammation associated with severe bacterial infections. Finally, the potency of H2O2 as a chemoattractant is shown by in vitro experiments in which, faced with competing gradients of H2O2 and other chemoattractants, neutrophils preferentially migrate towards H2O2. Full article
(This article belongs to the Section Innate Immunity and Inflammation)
Show Figures

Figure 1

28 pages, 4484 KB  
Article
Banana (Musa sapientum) Waste-Derived Biochar–Magnetite Magnetic Composites for Acetaminophen Removal via Photochemical Fenton Oxidation
by Manasik M. Nour, Maha A. Tony, Mai Kamal Fouad and Hossam A. Nabwey
Catalysts 2025, 15(10), 955; https://doi.org/10.3390/catal15100955 - 5 Oct 2025
Viewed by 158
Abstract
Recently, researchers have been focused on the recycling as well as transforming of bio-waste streams into a valuable resource. Banana peels are promising for such application, due to their wide availability. In this context, the integration of banana peel-derived biochar with environmentally benign [...] Read more.
Recently, researchers have been focused on the recycling as well as transforming of bio-waste streams into a valuable resource. Banana peels are promising for such application, due to their wide availability. In this context, the integration of banana peel-derived biochar with environmentally benign magnetite has significantly broadened its potential applications as a solar photocatalyst compared to the conventional photocatalysts. The materials are mixed in varied proportions of Ban-Char500-Mag@-(0:1), Ban-Char500@Mag-(1:1) and Ban-Char500@Mag-(2:1) and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) augmented with dispersive X-ray spectroscopy (EDX). Such modification is leading to an improvement in its application as a solar photocatalyst using the photochemical solar collector facility. The study discusses the factors controlling acetaminophen removal from aqueous effluent within 30 min of solar illumination time. Furthermore, the highlighted optimum parameters are pH 3.0, using 10 mg/L of the Ban-Char500@Mag-(1:1) catalyst and 100 mg/L of the hydrogen peroxide as a Fenton combination system for removing a complete acetaminophen from wastewater (100% oxidation). Also, the temperature influence in the oxidation system is studied and the high temperature is unfavorable, which verifies that the reaction is exothermic in nature. The catalyst is signified as a sustainable (recoverable, recyclable and reusable) substance, and showed a 72% removal even though it was in the six cyclic uses. Further, the kinetic study is assessed, and the experimental results revealed the oxidation process is following the first-order kinetic reaction. Also, the kinetic–thermodynamic parameters of activation are investigated and it is confirmed that the oxidation is exothermic and non-spontaneous in nature. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

14 pages, 1285 KB  
Article
Edible Herb Aster glehni Alleviates Inflammation and Oxidative Stress in Chondrocytes by Regulating p38 and NF-κB Signaling Pathways with Partial Involvement of Its Major Component, 3,5-Dicaffeoylqunic Acid
by Jihyeon Baek, Hanhee Choi, Sung Ran Yoon, Yong Jin Jeong, Shin Young Oh, Min-Sook Kang, Haeng-Ran Kim, Han-Seung Shin and Seok-Seong Kang
Int. J. Mol. Sci. 2025, 26(19), 9691; https://doi.org/10.3390/ijms26199691 - 4 Oct 2025
Viewed by 203
Abstract
Osteoarthritis (OA) is primarily a degenerative disease triggered by joint inflammation and oxidative stress. While Aster glehni is an edible and traditionally medicinal herb, the beneficial effect of A. glehni on OA progression remains unknown. This study aimed to investigate the effect of [...] Read more.
Osteoarthritis (OA) is primarily a degenerative disease triggered by joint inflammation and oxidative stress. While Aster glehni is an edible and traditionally medicinal herb, the beneficial effect of A. glehni on OA progression remains unknown. This study aimed to investigate the effect of A. glehni extract (AGE) and its primary biological compound—3,5-dicaffeoylquinic acid (3,5-DCQA)—on inflammation and oxidative stress in chondrocytes. AGE effectively inhibited the expression of interleukin (IL)-6, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-1, and MMP-13 in chondrocytes stimulated by IL-1β for 24 h. In contrast, 3,5-DCQA did not inhibit IL-6, COX-2, and MMP expressions under the same conditions. However, when chondrocytes were stimulated by IL-1β for a short duration (6 h), 3,5-DCQA suppressed IL-6, COX-2, and MMP expressions. The inhibition of IL-6, COX-2, and MMP expressions by AGE was associated with the p38 kinase and nuclear factor-κB signaling pathways, but not ERK and JNK signaling pathways. Furthermore, AGE prevented cell apoptosis and reduced intracellular reactive oxygen species levels in chondrocytes induced by hydrogen peroxide (H2O2). AGE restored the decreased superoxide dismutase 1 and catalase mRNA expressions caused by H2O2. Collectively, AGE may protect against cartilage deterioration by inhibiting inflammation and oxidative stress, making it a promising therapeutic agent for alleviating OA. Full article
(This article belongs to the Collection 30th Anniversary of IJMS: Updates and Advances in Biochemistry)
Show Figures

Graphical abstract

13 pages, 2439 KB  
Article
2-Hydroxymelatonin Induces Husk-Imposed Vivipary in the Transgenic Rice Overexpressing Melatonin 2-Hydroxylase
by Kyungjin Lee and Kyoungwhan Back
Biomolecules 2025, 15(10), 1412; https://doi.org/10.3390/biom15101412 - 4 Oct 2025
Viewed by 223
Abstract
Pre-harvest sprouting (PHS) reduces the quality and quantity of crop seeds. PHS can be imposed through the embryo or husk pathway of cereal crops. Most reported PHS seeds are imposed via the embryo pathway. Here, we generated transgenic rice plants overexpressing rice melatonin [...] Read more.
Pre-harvest sprouting (PHS) reduces the quality and quantity of crop seeds. PHS can be imposed through the embryo or husk pathway of cereal crops. Most reported PHS seeds are imposed via the embryo pathway. Here, we generated transgenic rice plants overexpressing rice melatonin 2-hydroxylase (OsM2H), which catalyzes the hydroxylation of melatonin to 2-hydroxymelatonin (2-OHM). OsM2H overexpression (M2H-OE) showed PHS under paddy conditions. Germination assays revealed that intact seeds harvested at 26 and 36 days after heading (DAH) showed PHS, whereas dehusked seeds did not, indicating husk-imposed PHS. Overproduction of 2-OHM was observed in M2H-OE seeds compared to wild-type control. In addition, M2H-OE lines produced more hydrogen peroxide than the wild-type. 2-OHM-induced reactive oxygen species resulted in the induction of OsGA3ox2, a gibberellin (GA) biosynthesis gene, and repression of OsGA2ox3, a GA degradation gene, in caryopses at 2 DAH, but in the induction of the ABA degradation gene OsABA8ox3 in intact seeds at 26 DAH. In addition, M2H-OE seedlings were longer and showed increased levels of hydrogen peroxide and OsGA3ox2 expression versus the wild-type. This is the first report showing that 2-OHM can induce PHS via the husk pathway in rice seeds through the induction of GA biosynthetic and ABA degradation genes. Full article
(This article belongs to the Special Issue New Insights into Hormonal Control of Plant Growth and Development)
Show Figures

Figure 1

25 pages, 5965 KB  
Article
Decoding Salinity Tolerance in Salicornia europaea L.: Image-Based Oxidative Phenotyping and Histochemical Mapping of Pectin and Lignin
by Susana Dianey Gallegos Cerda, Aleksandra Orzoł, José Jorge Chanona Pérez, Josué David Hernández Varela, Agnieszka Piernik and Stefany Cárdenas Pérez
Plants 2025, 14(19), 3055; https://doi.org/10.3390/plants14193055 - 2 Oct 2025
Viewed by 279
Abstract
Halophytes such as Salicornia europaea rely on biochemical and structural mechanisms to survive in saline environments. This study aimed to evaluate oxidative stress and structural defense responses in four inland populations—Poland (Inowrocław, Ciechocinek), Germany (Salzgraben-Salzdahlum, Salz), and Soltauquelle (Soltq)—subjected to 0, 200, 400, [...] Read more.
Halophytes such as Salicornia europaea rely on biochemical and structural mechanisms to survive in saline environments. This study aimed to evaluate oxidative stress and structural defense responses in four inland populations—Poland (Inowrocław, Ciechocinek), Germany (Salzgraben-Salzdahlum, Salz), and Soltauquelle (Soltq)—subjected to 0, 200, 400, and 1000 mM NaCl, using non-destructive, image-based approaches. Lipid peroxidation was assessed via malondialdehyde (MDA) detected with Schiff’s reagent, and hydrogen peroxide (H2O2) accumulation was visualized with 3,3′-diaminobenzidine (DAB). Roots and shoots were analyzed through colour image analysis and quantified using a computer vision system (CVS). MDA accumulation revealed population-specific differences, with Salz tending to exhibit lower peroxidation, characterized by lower L* ≈ 42–43 and higher b* ≈ 37–18 in shoots at 200–400 mM, which may reflect a potentially more effective salt-management strategy. Although H2O2 responses deviated from a direct salinity-dependent trend, particularly in the tolerant Salz and Soltq populations, both approaches effectively tracked population-specific adaptation, with German populations displaying detectable basal H2O2 levels, consistent with its multifunctional signalling role in salt management and growth regulation. Structural defences were further explored through histochemical mapping and image analysis of pectin and lignin distribution, which revealed population-specific patterns consistent with cell wall remodelling under stress. Non-destructive, image-based methods proved effective for detecting oxidative and structural responses in halophytes. Such a non-destructive, cost-efficient, and reproducible approach can accelerate the identification of salt-tolerant ecotypes for saline agriculture and reinforce S. europaea as a model species for elucidating salt-tolerance mechanisms. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants—Second Edition)
Show Figures

Figure 1

15 pages, 1974 KB  
Article
A Flexible Electrochemical Sensor Based on Porous Ceria Hollow Microspheres Nanozyme for Sensitive Detection of H2O2
by Jie Huang, Xuanda He, Shuang Zou, Keying Ling, Hongying Zhu, Qijia Jiang, Yuxuan Zhang, Zijian Feng, Penghui Wang, Xiaofei Duan, Haiyang Liao, Zheng Yuan, Yiwu Liu and Jinghua Tan
Biosensors 2025, 15(10), 664; https://doi.org/10.3390/bios15100664 - 2 Oct 2025
Viewed by 371
Abstract
The development of cost-effective and highly sensitive hydrogen peroxide (H2O2) biosensors with robust stability is critical due to the pivotal role of H2O2 in biological processes and its broad utility across various applications. In this work, [...] Read more.
The development of cost-effective and highly sensitive hydrogen peroxide (H2O2) biosensors with robust stability is critical due to the pivotal role of H2O2 in biological processes and its broad utility across various applications. In this work, porous ceria hollow microspheres (CeO2-phm) were synthesized using a solvothermal synthesis method and employed in the construction of an electrochemical biosensor for H2O2 detection. The resulting CeO2-phm featured a uniform pore size centered at 3.4 nm and a high specific surface area of 168.6 m2/g. These structural attributes contribute to an increased number of active catalytic sites and promote efficient electrolyte penetration and charge transport, thereby enhancing its electrochemical sensing performance. When integrated into screen-printed carbon electrodes (CeO2-phm/cMWCNTs/SPCE), the CeO2-phm/cMWCNTs/SPCE-based biosensor exhibited a wide linear detection range from 0.5 to 450 μM, a low detection limit of 0.017 μM, and a high sensitivity of 2070.9 and 2161.6 μA·mM−1·cm−2—surpassing the performance of many previously reported H2O2 sensors. In addition, the CeO2-phm/cMWCNTs/SPCE-based biosensor possesses excellent anti-interference performance, repeatability, reproducibility, and stability. Its effectiveness was further validated through successful application in real sample analysis. Hence, CeO2-phm with solvothermal synthesis has great potential applications as a sensing material for the quantitative determination of H2O2. Full article
(This article belongs to the Special Issue Advances in Nanozyme-Based Biosensors)
Show Figures

Figure 1

19 pages, 2745 KB  
Article
Mechanistic Insights into Silicon-Enhanced Cadmium Detoxification in Rice: A Spatiotemporal Perspective
by Hongmei Lin, Miaohua Jiang, Shaofei Jin and Songbiao Chen
Agronomy 2025, 15(10), 2331; https://doi.org/10.3390/agronomy15102331 - 2 Oct 2025
Viewed by 213
Abstract
The spatiotemporal regulatory mechanism underlying silicon (Si)-mediated cadmium (Cd) detoxification in rice (Oryza sativa L.) was investigated using non-invasive micro-test technology (NMT), combined with physiological and biochemical analyses. The results revealed the following: (1) Si significantly inhibited Cd2+ influx into rice [...] Read more.
The spatiotemporal regulatory mechanism underlying silicon (Si)-mediated cadmium (Cd) detoxification in rice (Oryza sativa L.) was investigated using non-invasive micro-test technology (NMT), combined with physiological and biochemical analyses. The results revealed the following: (1) Si significantly inhibited Cd2+ influx into rice roots, with the most pronounced reductions in ion flux observed under moderate Cd stress (Cd50, 50 μmol·L−1), reaching 35.57% at 7 days and 42.30% at 14 days. Cd accumulation in roots decreased by 34.03%, more substantially than the 28.27% reduction observed in leaves. (2) Si application enhanced photosynthetic performance, as evidenced by a 14.21% increase in net photosynthetic rate (Pn), a 32.14% increase in stomatal conductance (Gs), and a marked restoration of Rubisco activity. (3) Si mitigated oxidative damage, with malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels reduced by 11.29–21.88%, through the upregulation of antioxidant enzyme activities (SOD, APX, CAT increased by 15.34–38.33%) and glutathione metabolism (GST activity and GSH content increased by 60.78% and 51.35%, respectively). (4) The mitigation effects of Si were found to be spatiotemporally specific, with stronger responses under Cd50 than Cd100 (100 μmol·L−1), at 7 days (d) compared to 14 d, and in roots relative to leaves. Our study reveals a coordinated mechanism by which Si modulates Cd uptake, enhances photosynthetic capacity, and strengthens antioxidant defenses to alleviate Cd toxicity in rice. These findings provide a scientific basis for the application of Si in mitigating heavy metal stress in agricultural systems. Full article
(This article belongs to the Special Issue Rice Cultivation and Physiology)
Show Figures

Figure 1

21 pages, 11284 KB  
Article
Processing of Pineapple Leaf Fibers for the Production of Oxidized Micro-/Nanofibrillated Cellulose
by Marianelly Esquivel-Alfaro, Belkis Sulbarán-Rangel, Oscar Rojas-Carrillo, Jingqian Chen, Laria Rodríguez-Quesada, Giovanni Sáenz-Arce and Orlando J. Rojas
Polymers 2025, 17(19), 2671; https://doi.org/10.3390/polym17192671 - 2 Oct 2025
Viewed by 379
Abstract
Pineapple leaf fibers (PALFs), obtained from abundant yet underutilized pineapple leaf residues, represent a promising feedstock for producing fibrillated cellulose. In this work, cellulosic fibers were isolated and characterized by Fiber Quality Analysis (FQA), showing lengths between 0.33 and 0.47 mm and widths [...] Read more.
Pineapple leaf fibers (PALFs), obtained from abundant yet underutilized pineapple leaf residues, represent a promising feedstock for producing fibrillated cellulose. In this work, cellulosic fibers were isolated and characterized by Fiber Quality Analysis (FQA), showing lengths between 0.33 and 0.47 mm and widths of 12.2 µm after organosolv pulping using ethanol and acetic acid as a catalyst, followed by hydrogen peroxide bleaching with diethylenetriaminepentaacetic acid as a chelating agent. The cellulosic fibers were then subjected to TEMPO-mediated oxidation and subsequently disintegrated by microfluidization to produce micro-/nanofibrillated cellulose (MNFC) with a carboxylate content of 0.85 and 1.00 mmol COO/g, zeta potential of −41 and −53 mV, and average widths of 15 and 12 nm for unbleached and bleached nanofibrils, respectively. The nanofibrillation yields were 73% and 68% for the bleached and unbleached MNFC samples, indicating the presence of some non-fibrillated or partially fibrillated fractions. X-ray diffraction analysis confirmed preservation of cellulose type I crystalline structure, with increased crystallinity, reaching 85% in the bleached MNFC. These findings demonstrate the feasibility of a sequential process, combining organosolv pulping, hydrogen peroxide bleaching, TEMPO-mediated oxidation, and microfluidization, for preparing MNFC from pineapple leaf fibers. Overall, this study highlights pineapple leaf residues as a sustainable source of MNFC, supporting strategies to transform agricultural waste into valuable bio-based materials. Full article
(This article belongs to the Special Issue New Advances in Cellulose and Wood Fibers)
Show Figures

Graphical abstract

18 pages, 3623 KB  
Article
Identification of the CDPK Pan-Genomic Family in Pear (Pyrus spp.) and Analysis of Its Response to Venturia nashicola
by Xing Hu, Yixuan Lian, Zhaoyun Yang, Tong Li, Yuqin Song and Liulin Li
Horticulturae 2025, 11(10), 1181; https://doi.org/10.3390/horticulturae11101181 - 2 Oct 2025
Viewed by 195
Abstract
This study investigated the phylogenetic relationships in the pear calcium-dependent protein kinase (CDPK) pan-gene family and elucidated its role in the resistance to scab disease caused by Venturia nashicola. By integrating data from eight genomic sets from five cultivated pear species, Pyrus [...] Read more.
This study investigated the phylogenetic relationships in the pear calcium-dependent protein kinase (CDPK) pan-gene family and elucidated its role in the resistance to scab disease caused by Venturia nashicola. By integrating data from eight genomic sets from five cultivated pear species, Pyrus bretschneideri, P. ussuriensis, P. sinkiangensis, P pyrifolia, and P. communis, along with P. betulifolia and interspecific hybrids, 63 PyCDPK family members were identified. Among these, P. communis possessed the highest number of CDPK genes, whereas P. bretschneiderilia had the fewest. These genes encode proteins ranging from 459 to 810 amino acids in length, and are predominantly localized to the cell membrane. Six genes, PyCDPK9, PyCDPK11, PyCDPK12, PyCDPK14, PyCDPK16, and PyCDPK19, were classified as core members of the pan-genome, and PyCDPK19 showed evidence of positive selection pressure. Clustering analysis and transcriptomic expression profiling of disease-resistance-related CDPKs identified PyCDPK19 as a key candidate associated with scab resistance. Promoter analysis revealed that the regulatory region of PyCDPK19 contains multiple cis-acting elements involved in defense responses and methyl jasmonate signaling. Transient overexpression of PyCDPK19 in tobacco leaves induced hypersensitive cell necrosis, accompanied by significant increases in hydrogen peroxide (H2O2) accumulation and malondialdehyde (MDA) content. Similarly, overexpression in pear fruit callus tissue followed by pathogen inoculation resulted in elevated levels of both H2O2 and MDA. Collectively, these findings indicate that PyCDPK19 mediates defense responses through the activation of the reactive oxygen species pathway in both tobacco and pear plants, providing a promising genetic target for enhancing scab resistance in pears. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

26 pages, 5547 KB  
Article
Coffee Waste as a Green Precursor for Iron Nanoparticles: Toward Circular, Efficient and Eco-Friendly Dye Removal from Aqueous Systems
by Cristina Rodríguez-Rasero, Juan Manuel Garrido-Zoido, María del Mar García-Galán, Eduardo Manuel Cuerda-Correa and María Francisca Alexandre-Franco
J. Xenobiot. 2025, 15(5), 158; https://doi.org/10.3390/jox15050158 - 2 Oct 2025
Viewed by 201
Abstract
In this study, the use of spent coffee waste as a green precursor of polyphenolic compounds, which are subsequently employed as reducing agents for the synthesis of zero-valent iron nanoparticles (nZVI) aimed at the efficient removal of dyes from aqueous systems, has been [...] Read more.
In this study, the use of spent coffee waste as a green precursor of polyphenolic compounds, which are subsequently employed as reducing agents for the synthesis of zero-valent iron nanoparticles (nZVI) aimed at the efficient removal of dyes from aqueous systems, has been investigated. The nanoparticles, generated in situ in the presence of controlled amounts of hydrogen peroxide, were applied in the removal of organic dyes—including methylene blue, methyl orange, and orange G—through a heterogeneous Fenton-like catalytic process. The synthesized nZVI were thoroughly characterized by nitrogen adsorption at 77 K, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (XRD). A statistical design of experiments and response surface methodology were employed to evaluate the effect of polyphenol, Fe(III), and H2O2 concentrations on dye removal efficiency. Results showed that under optimized conditions, a 100% removal efficiency could be achieved. This work highlights the potential of nZVI synthesized from agro-industrial waste through sustainable routes as an effective solution for water remediation, contributing to circular economy strategies and environmental protection. Full article
Show Figures

Graphical abstract

17 pages, 2248 KB  
Article
Expression of L-Amino Acid Oxidase (Ml-LAAO) from the Venom of the Micrurus lemniscatus Snake in a Mammalian Cell System
by Ari Junio de Oliveira Costa, Alessandra Matavel, Patricia Cota Campos, Jaqueline Leal dos Santos, Ana Caroline Zampiroli Ataide, Sophie Yvette Leclercq, Valéria Gonçalves de Alvarenga, Sergio Caldas, William Castro-Borges and Márcia Helena Borges
Toxins 2025, 17(10), 491; https://doi.org/10.3390/toxins17100491 - 2 Oct 2025
Viewed by 291
Abstract
Animal venoms are rich in bioactive molecules with promising biotechnological potential. They comprise both protein and non-protein toxins. Among the protein toxins are enzymes, such as phospholipases A2, proteases and L-amino acid oxidases (LAAOs). LAAOs exhibit antimicrobial, antiparasitic, antiviral, and anticancer [...] Read more.
Animal venoms are rich in bioactive molecules with promising biotechnological potential. They comprise both protein and non-protein toxins. Among the protein toxins are enzymes, such as phospholipases A2, proteases and L-amino acid oxidases (LAAOs). LAAOs exhibit antimicrobial, antiparasitic, antiviral, and anticancer effects, making them potential candidates for biotechnological applications. These activities are linked to their ability to catalyze oxidative reactions that convert L-amino acids into α-keto acids, releasing ammonia and hydrogen peroxide, which contribute to the immune response, pathogen elimination, and oxidative stress. However, in snakes of the Micrurus genus, LAAOs generally represent a small portion of the venom (up to ~7%), which limits their isolation and study. To overcome this, the present study aimed to produce Ml-LAAO, the enzyme from Micrurus lemniscatus, through heterologous expression in mammalian cells. The gene sequence was inferred from its primary structure and synthesized into the pSecTag2B vector for expression in HEK293T cells. After purification using a His Trap-HP column, the presence of recombinant Ml-LAAO (Ml-LAAOrec) was confirmed by Western blot and mass spectrometry, validating its identity. These results support successful recombinant expression of Ml-LAAO and highlight its potential for scalable production and future biotechnological applications. Full article
(This article belongs to the Special Issue Biochemistry, Pathology and Applications of Venoms)
Show Figures

Figure 1

Back to TopTop