Previous Issue
Volume 5, September
 
 

J. Respir., Volume 5, Issue 4 (December 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 849 KB  
Systematic Review
Health Effects and Preventive Strategies for Radon Exposure: A Systematic Review of the Literature
by Luigi Cofone, Marise Sabato, Chiara Colombo, Stefania Scalingi, Antonio Montesi, Lorenzo Paglione and Federica Patania
J. Respir. 2025, 5(4), 16; https://doi.org/10.3390/jor5040016 - 10 Oct 2025
Viewed by 439
Abstract
Introduction: Radon is a radioactive noble gas formed from uranium decay in the Earth’s crust. The most significant isotope, 222Rn, emits alpha particles capable of damaging lung tissue and inducing cancer. Radon exposure is affected by geophysical and building characteristics and is [...] Read more.
Introduction: Radon is a radioactive noble gas formed from uranium decay in the Earth’s crust. The most significant isotope, 222Rn, emits alpha particles capable of damaging lung tissue and inducing cancer. Radon exposure is affected by geophysical and building characteristics and is recognized as a Group 1 carcinogen by the IARC. Despite regulatory thresholds (e.g., EURATOM standards), health risks remain. Various mitigation methods aim to reduce indoor radon exposure and its impact. Materials and Methods: This systematic review followed PRISMA guidelines. PubMed, Scopus, and Web of Science were searched up to 28 February 2025, using a defined string. Studies with original data on radon exposure and lung cancer risk or mitigation efficacy were included. Independent screening and quality assessment (Newcastle–Ottawa Scale) were conducted by multiple reviewers. Results: Of the 457 studies identified, 14 met the inclusion criteria. Eleven of these investigated the link between indoor radon and lung cancer risk, and three evaluated mitigation strategies. Radon levels were commonly measured using passive alpha track detectors. Levels varied depending on geographical location, season, building design and ventilation, these were higher in rural homes and during the colder months. Case–control studies consistently found an increased lung cancer risk with elevated radon exposure, especially among smokers. Effective mitigation methods included sub-slab depressurisation and balanced ventilation systems, which significantly reduced indoor radon concentrations. Adenocarcinoma was the most common lung cancer subtype in non-smokers, whereas squamous and small cell carcinomas were more prevalent in smokers exposed to radon. Discussion and Conclusions: This review confirms the robust association between indoor radon exposure and lung cancer. Risks persist even below regulatory limits and are amplified by smoking. While mitigation techniques are effective, their application remains uneven across regions. Stronger public education, building codes, and targeted interventions are needed, particularly in high-risk areas. To inform future prevention and policy, further research should seek to clarify radon’s molecular role in lung carcinogenesis, especially among non-smokers. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop