COVID-19 Pandemic and the Burden of Internet Addiction in the United States
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khubchandani, J.; Sharma, S.; Webb, F.J.; Wiblishauser, M.J.; Bowman, S.L. Post-lockdown depression and anxiety in the USA during the COVID-19 pandemic. J. Public Health 2021, 43, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Király, O.; Potenza, M.N.; Stein, D.J.; King, D.L.; Hodgins, D.C.; Saunders, J.B.; Demetrovics, Z. Preventing problematic internet use during the COVID-19 pandemic: Consensus guidance. Compr. Psychiatry 2020, 100, 152180. [Google Scholar] [CrossRef]
- Kempuraj, D.; Selvakumar, G.P.; Ahmed, M.E.; Raikwar, S.P.; Thangavel, R.; Khan, A.; Zaheer, A. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist 2020, 26, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Veer, I.M.; Riepenhausen, A.; Zerban, M.; Wackerhagen, C.; Puhlmann, L.M.; Engen, H.; Kalisch, R. Psycho-social factors associated with mental resilience in the Corona lockdown. Transl. Psychiatry 2021, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Maarefvand, M.; Hosseinzadeh, S.; Farmani, O.; Safarabadi Farahani, A.; Khubchandani, J. Coronavirus outbreak and stress in Iranians. Int. J. Environ. Res. Public Health 2020, 17, 4441. [Google Scholar] [CrossRef] [PubMed]
- Khubchandani, J.; Kandiah, J.; Saiki, D. The COVID-19 pandemic, stress, and eating practices in the United States. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Kandiah, J.; Khubchandani, J.; Saiki, D. COVID-19 and Americans’ perceptions of change in diet quality. J. Fam. Consum. Sci. 2021, 113, 17–24. [Google Scholar] [CrossRef]
- Du, C.; Zan, M.C.H.; Cho, M.J.; Fenton, J.I.; Hsiao, P.Y.; Hsiao, R.; Keaver, L.; Lai, C.-C.; Lee, H.; Ludy, M.-J.; et al. The effects of sleep quality and resilience on perceived stress, dietary behaviors, and alcohol misuse: A mediation-moderation analysis of higher education students from Asia, Europe and North America during the COVID-19 pandemic. Nutrients 2021, 13, 442. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Dixit, A.; Joshi, G. Is compulsive social media use amid COVID-19 pandemic addictive behavior or coping mechanism? Asian J. Psychiatry 2020, 54, 102290. [Google Scholar] [CrossRef] [PubMed]
- Khubchandani, J.; Sharma, S.; Wiblishauser, M.J.; Price, J.H.; Webb, F.J. COVID-19 related information and psychological distress: Too much or too bad? Brain Behav. Immun.-Health 2021, 12, 100213. [Google Scholar] [CrossRef] [PubMed]
- Perrin, A.; Atske, S. About Three-in-Ten U.S. Adults Say They Are ‘Almost Constantly’ Online. 2021. Available online: https://www.pewresearch.org/fact-tank/2021/03/26/about-three-in-ten-u-s-adults-say-they-are-almost-constantly-online/ (accessed on 9 August 2021).
- Masaeli, N.; Farhadi, H. Prevalence of internet-based addictive behaviors during COVID-19 pandemic: A systematic review. J. Addict. Dis. 2021, 28, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, R. How a Year of Living Online Has Changed US. 2021. Available online: https://mashable.com/article/covid-19-pandemic-internet-use/ (accessed on 18 July 2021).
- Robinson, R. The Addiction Nobody Talks about but Everybody Is Doing and 10 Solutions. 2020. Available online: https://www.forbes.com/sites/bryanrobinson/2020/06/20/the-addiction-nobody-talks-about-but-everybody-is-doing-and-10-solutions/?sh=476757f8467c (accessed on 18 August 2021).
- Khubchandani, J.; Brey, R.; Kotecki, J.; Kleinfelder, J.; Anderson, J. The psychometric properties of PHQ-4 depression and anxiety screening scale among college students. Arch. Psychiatr. Nurs. 2016, 30, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, D.M.; Karila, L.; Billieux, J. Internet addiction: A systematic review of epidemiological research for the last decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laconi, S.; Urbán, R.; Kaliszewska-Czeremska, K.; Kuss, D.J.; Gnisci, A.; Sergi, I.; Király, O. Psychometric evaluation of the nine-item problematic internet use questionnaire (PIUQ-9) in nine European samples of internet users. Front. Psychol. 2019, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Vally, Z.; Laconi, S.; Kaliszewska-Czeremska, K. Problematic internet use, psychopathology, defense mechanisms, and coping strategies: A cross-sectional Study from the United Arab Emirates. Psychiatr. Q. 2020, 91, 587–602. [Google Scholar] [CrossRef] [PubMed]
- Businesswire. COVID-19 Drives Nearly 1 in 3 Americans to Screen Addiction. 2021. Available online: https://www.businesswire.com/news/home/20210823005693/en/ (accessed on 18 August 2021).
- Sussman, S.; Lisha, N.; Griffiths, M. Prevalence of the addictions: A problem of the majority or the minority? Eval. Health Prof. 2011, 34, 3–56. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Li, A.Y.L. Internet addiction prevalence and quality of (real) life: A meta-analysis of 31 nations across seven world regions. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 755–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
During the Pandemic or in the Last Year(March 2020–April 2021) | Once a Month or Less (Score 1) | Few Times Every Month (Score 2) | Once Every Week (Score 3) | Some Days Every Week (Score 4) | Every Day Last Year (Score 5) | Mean Sample Score (±S.E) |
---|---|---|---|---|---|---|
N (%) | N (%) | N (%) | N (%) | N (%) | ||
I used internet devices longer than I planned to. | 260 (20) | 404 (31) | 344 (26) | 202 (16) | 95 (7) | 2.60 (0.33) |
I routinely cut short my sleep to spend more time online. | 280 (22) | 416 (32) | 302 (23) | 205 (18) | 102 (8) | 2.56 (0.04) |
I felt restless, tensed, frustrated, or irritated when I could not use the internet or use it as long as I wanted | 319 (24) | 332 (25) | 341 (26) | 255 (20) | 58 (5) | 2.54 (0.33) |
I neglected household chores/work to spend more time online | 311 (24) | 389 (30) | 345 (27) | 194 (15) | 66 (5) | 2.48 (0.32) |
I tried to spend less time online but was not able to do so | 344 (26) | 362 (28) | 325 (25) | 196 (15) | 78 (6) | 2.47 (0.34) |
I felt depressed, moody, or nervous when I was not on the internet and these feelings stopped once I was back online? | 348 (27) | 365 (285) | 349 (27) | 183 (14) | 183 (5) | 2.42 (0.32) |
I was told that I spent too much time online by people in the family/household | 386 (30) | 351 (27) | 310 (24) | 177 (14) | 81 (6) | 2.40 (0.34) |
I tried to conceal/hide the amount of time spent online | 386 (30) | 356 (27) | 304 (23) | 201 (15) | 58 (5) | 2.38 (0.32) |
I got into arguments with a significant other or family member over being online | 413 (32) | 325 (25) | 331 (25) | 176 (14) | 60 (5) | 2.35 (0.32) |
Variable | Total Sample N (%) | No Addiction (Score = 9–21) N (%) | Probable Addiction (Score = 22–30) N (%) | Definite Addiction (Score = 31–45) N (%) | p Value |
---|---|---|---|---|---|
All Participants | 1305 (100) | 589 (45) | 539 (41) | 177 (14) | |
Sex | 0.18 | ||||
Male | 840 (64) | 364 (43) | 356 (42) | 120 (15) | |
Female | 465 (36) | 225 (48) | 183 (39) | 57 (13) | |
Age Group | 0.006 | ||||
18–25 years | 164 (13) | 62 (38) | 78 (48) | 24 (14) | |
26–35 years | 570 (44) | 251 (44) | 232 (41) | 87 (15) | |
36–45 years | 269 (21) | 112 (42) | 120 (45) | 37 (13) | |
46–60 years | 221 (17) | 113 (51) | 87 (39) | 21 (10) | |
≥61 years | 79 (6) | 50 (63) | 22 (28) | 7 (9) | |
Race | 0.001 | ||||
White | 1021 (78) | 439 (43) | 449 (44) | 133 (13) | |
African-Americans | 158 (12) | 84 (53) | 56 (35) | 18 (11) | |
Asian | 86 (7) | 40 (47) | 26 (30) | 20 (23) | |
Other | 40 (3) | 26 (65) | 8 (20) | 6 (15) | |
Ethnicity | <0.001 | ||||
Hispanic | 386 (30) | 138 (36) | 173 (45) | 75 (19) | |
Non-Hispanic | 919 (70) | 451 (49) | 366 (40) | 102 (11) | |
Marital Status | <0.001 | ||||
Single/never married | 277 (21) | 159 (57) | 86 (31) | 32 (12) | |
Married | 944 (72) | 375 (40) | 432 (45) | 137 (15) | |
Engaged/living with a partner | 41 (3) | 26 (64) | 12 (29) | 3 (7) | |
Divorced/separated/widow | 43 (3) | 29 (67) | 9 (21) | 5 (12) | |
Education | <0.001 | ||||
<College degree | 219 (17) | 143 (65) | 61 (28) | 15 (7) | |
Bachelor’s degree | 818 (63) | 332 (41) | 376 (46) | 110 (13) | |
≥Master’s degree | 268 (20) | 114 (43) | 102 (38) | 52 (19) | |
Current Employment Status | <0.001 | ||||
Full-time | 1124 (86) | 479 (43) | 484 (43) | 161 (14) | |
Part-time | 110 (8) | 57 (52) | 44 (40) | 9 (8) | |
Not employed | 71 (5) | 53 (75) | 11 (16) | 7 (9) | |
Area of Residence | <0.001 | ||||
Rural | 394 (30) | 162 (41) | 182 (46) | 50 (13) | |
Urban | 649 (50) | 265 (41) | 278 (43) | 106 (16) | |
Suburban | 262 (20) | 162 (62) | 79 (30) | 21 (8) | |
Depression (PHQ-2) | <0.001 | ||||
No | 940 (72) | 498 (53) | 377 (40) | 65 (7) | |
Yes | 365 (28) | 91 (25) | 162 (44) | 112 (31) | |
Anxiety (GAD-2) | <0.001 | ||||
No | 976 (75) | 503 (52) | 404 (41) | 69 (7) | |
Yes | 329 (25) | 86 (26) | 135 (41) | 108 (33) | |
Severe Psychological Distress (PHQ-4) | <0.001 | ||||
No | 1149 (88) | 549 (48) | 506 (44) | 94 (8) | |
Yes | 156 (12) | 40 (26) | 33 (21) | 83 (53) |
Outcome | No Addiction Reference | Probable Addiction | Definite Addiction | ||
---|---|---|---|---|---|
Model 1 OR (95%CI) | Model 2 AOR (95%CI) | Model 1 OR (95%CI) | Model 2 AOR (95%CI) | ||
Depression | 1 | 2.35 (1.76–3.15) * | 2.39 (1.77–3.23) * | 9.43 (6.45–13.76) * | 9.75 (6.58–14.45) * |
Anxiety | 1 | 1.96 (1.45–2.64) * | 1.91 (1.40–2.60) * | 9.16 (6.27–13.37) * | 9.27 (6.25–13.72) * |
Severe Psychological Distress (both anx & dep) | 1 | 0.65 (0.90–1.44) | 0.94 (0.57–1.53) | 12.12 (7.84–18.75) * | 13.54 (8.48–18.90) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khubchandani, J.; Sharma, S.; Price, J.H. COVID-19 Pandemic and the Burden of Internet Addiction in the United States. Psychiatry Int. 2021, 2, 402-409. https://doi.org/10.3390/psychiatryint2040031
Khubchandani J, Sharma S, Price JH. COVID-19 Pandemic and the Burden of Internet Addiction in the United States. Psychiatry International. 2021; 2(4):402-409. https://doi.org/10.3390/psychiatryint2040031
Chicago/Turabian StyleKhubchandani, Jagdish, Sushil Sharma, and James H. Price. 2021. "COVID-19 Pandemic and the Burden of Internet Addiction in the United States" Psychiatry International 2, no. 4: 402-409. https://doi.org/10.3390/psychiatryint2040031
APA StyleKhubchandani, J., Sharma, S., & Price, J. H. (2021). COVID-19 Pandemic and the Burden of Internet Addiction in the United States. Psychiatry International, 2(4), 402-409. https://doi.org/10.3390/psychiatryint2040031