Innate Immunity in Calcinosis Cutis
Abstract
:1. Introduction
2. Pathogenesis
2.1. Calcinosis Cutis with Normal Serum Calcium and Phosphate
2.2. Calcinosis Cutis with Abnormal Serum Calcium and Phosphate
2.3. Summary
3. Autoantibody Associations
3.1. Dermatomyositis
3.2. Systemic Sclerosis
3.3. Other Autoimmune Diseases
3.4. Summary
4. Treatment
4.1. Bisphosphonates
4.2. Antibiotics
4.3. Colchicine
4.4. Corticosteroids and Intravenous Immunoglobulin
4.5. Biologics
4.6. Summary
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muktabhant, C.; Thammaroj, P.; Chowchuen, P.; Foocharoen, C. Prevalence and Clinical Association with Calcinosis Cutis in Early Systemic Sclerosis. Mod. Rheumatol. 2021, 31, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Gerami, P.; Walling, H.W.; Lewis, J.; Doughty, L.; Sontheimer, R.D. A Systematic Review of Juvenile-Onset Clinically Amyopathic Dermatomyositis. Br. J. Dermatol. 2007, 157, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Coates, M.; Blanchard, S.; MacLeod, A.S. Innate Antimicrobial Immunity in the Skin: A Protective Barrier against Bacteria, Viruses, and Fungi. PLoS Pathog. 2018, 14, e1007353. [Google Scholar] [CrossRef] [PubMed]
- Lanna, C.; Mancini, M.; Gaziano, R.; Cannizzaro, M.V.; Galluzzo, M.; Talamonti, M.; Rovella, V.; Annicchiarico-Petruzzelli, M.; Melino, G.; Wang, Y.; et al. Skin Immunity and Its Dysregulation in Psoriasis. Cell Cycle 2019, 18, 2581–2589. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Seok, J.K.; Kang, H.C.; Cho, Y.-Y.; Lee, H.S.; Lee, J.Y. Skin Barrier Abnormalities and Immune Dysfunction in Atopic Dermatitis. Int. J. Mol. Sci. 2020, 21, 2867. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.W.; Whitley, M.J.; Mariottoni, P.; Jaleel, T.; MacLeod, A.S. Hidradenitis Suppurativa: Host-Microbe and Immune Pathogenesis Underlie Important Future Directions. JID Innov. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Róbert, L.; Kiss, N.; Medvecz, M.; Kuroli, E.; Sárdy, M.; Hidvégi, B. Epidemiology and Treatment of Calcinosis Cutis: 13 Years of Experience. Indian J. Dermatol. 2020, 65, 105–111. [Google Scholar] [CrossRef]
- Rauch, L.; Hein, R.; Biedermann, T.; Eyerich, K.; Lauffer, F. Bisphosphonates for the Treatment of Calcinosis Cutis-A Retrospective Single-Center Study. Biomedicines 2021, 9, 1698. [Google Scholar] [CrossRef]
- Reiter, N.; El-Shabrawi, L.; Leinweber, B.; Berghold, A.; Aberer, E. Calcinosis Cutis: Part I. Diagnostic Pathway. J. Am. Acad. Dermatol. 2011, 65, 1–12. [Google Scholar] [CrossRef]
- Jiménez-Gallo, D.; Ossorio-García, L.; Linares-Barrios, M. Calcinosis Cutis and Calciphylaxis. Actas Dermosifiliogr. 2015, 106, 785–794. [Google Scholar] [CrossRef]
- Mukamel, M.; Horev, G.; Mimouni, M. New Insight into Calcinosis of Juvenile Dermatomyositis: A Study of Composition and Treatment. J. Pediatr. 2001, 138, 763–766. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Ueno, K.; Ishikawa, S.; Kasahara, Y.; Yachie, A. Role of Activated Macrophage and Inflammatory Cytokines in the Development of Calcinosis in Juvenile Dermatomyositis. Rheumatology 2014, 53, 766–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, K.; Souma, Y.; Akakabe, Y.; Kitamura, Y.; Matsuo, K.; Shimoda, Y.; Ueyama, T.; Matoba, S.; Yamada, H.; Okigaki, M.; et al. Macrophages Play a Unique Role in the Plaque Calcification by Enhancing the Osteogenic Signals Exerted by Vascular Smooth Muscle Cells. Biochem. Biophys. Res. Commun. 2012, 425, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Lencel, P.; Delplace, S.; Pilet, P.; Leterme, D.; Miellot, F.; Sourice, S.; Caudrillier, A.; Hardouin, P.; Guicheux, J.; Magne, D. Cell-Specific Effects of TNF-α and IL-1β on Alkaline Phosphatase: Implication for Syndesmophyte Formation and Vascular Calcification. Lab. Investig. 2011, 91, 1434–1442. [Google Scholar] [CrossRef]
- Kurozumi, A.; Nakano, K.; Yamagata, K.; Okada, Y.; Nakayamada, S.; Tanaka, Y. IL-6 and SIL-6R Induces STAT3-Dependent Differentiation of Human VSMCs into Osteoblast-like Cells through JMJD2B-Mediated Histone Demethylation of RUNX2. Bone 2019, 124, 53–61. [Google Scholar] [CrossRef]
- Lopez-Castejon, G.; Brough, D. Understanding the Mechanism of IL-1β Secretion. Cytokine Growth Factor Rev. 2011, 22, 189–195. [Google Scholar] [CrossRef]
- Wen, C.; Yang, X.; Yan, Z.; Zhao, M.; Yue, X.; Cheng, X.; Zheng, Z.; Guan, K.; Dou, J.; Xu, T.; et al. Nalp3 Inflammasome Is Activated and Required for Vascular Smooth Muscle Cell Calcification. Int. J. Cardiol. 2013, 168, 2242–2247. [Google Scholar] [CrossRef]
- Awan, Z.; Denis, M.; Roubtsova, A.; Essalmani, R.; Marcinkiewicz, J.; Awan, A.; Gram, H.; Seidah, N.G.; Genest, J. Reducing Vascular Calcification by Anti-IL-1β Monoclonal Antibody in a Mouse Model of Familial Hypercholesterolemia. Angiology 2016, 67, 157–167. [Google Scholar] [CrossRef]
- Chefetz, I.; Ben Amitai, D.; Browning, S.; Skorecki, K.; Adir, N.; Thomas, M.G.; Kogleck, L.; Topaz, O.; Indelman, M.; Uitto, J.; et al. Normophosphatemic Familial Tumoral Calcinosis Is Caused by Deleterious Mutations in SAMD9, Encoding a TNF-Alpha Responsive Protein. J. Investig. Dermatol. 2008, 128, 1423–1429. [Google Scholar] [CrossRef] [Green Version]
- Pachman, L.M.; Liotta-Davis, M.R.; Hong, D.K.; Kinsella, T.R.; Mendez, E.P.; Kinder, J.M.; Chen, E.H. TNFalpha-308A Allele in Juvenile Dermatomyositis: Association with Increased Production of Tumor Necrosis Factor Alpha, Disease Duration, and Pathologic Calcifications. Arthritis Rheum. 2000, 43, 2368–2377. [Google Scholar] [CrossRef]
- Fukuyo, S.; Yamaoka, K.; Sonomoto, K.; Oshita, K.; Okada, Y.; Saito, K.; Yoshida, Y.; Kanazawa, T.; Minami, Y.; Tanaka, Y. IL-6-Accelerated Calcification by Induction of ROR2 in Human Adipose Tissue-Derived Mesenchymal Stem Cells Is STAT3 Dependent. Rheumatology 2014, 53, 1282–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Z.; Ma, T.; Lin, Y.; Lu, X.; Zhang, C.; Chen, S.; Jian, Z. IL-6/STAT3 Pathway Intermediates M1/M2 Macrophage Polarization during the Development of Hepatocellular Carcinoma. J. Cell. Biochem. 2018, 119, 9419–9432. [Google Scholar] [CrossRef] [PubMed]
- Duvvuri, B.; Pachman, L.M.; Morgan, G.; Khojah, A.M.; Klein-Gitelman, M.; Curran, M.L.; Doty, S.; Lood, C. Neutrophil Extracellular Traps in Tissue and Periphery in Juvenile Dermatomyositis. Arthritis Rheumatol. 2020, 72, 348–358. [Google Scholar] [CrossRef]
- Osthoff, M.; Ngian, G.-S.; Dean, M.M.; Nikpour, M.; Stevens, W.; Proudman, S.; Eisen, D.P.; Sahhar, J. Potential Role of the Lectin Pathway of Complement in the Pathogenesis and Disease Manifestations of Systemic Sclerosis: A Case-Control and Cohort Study. Arthritis Res. Ther. 2014, 16, 480. [Google Scholar] [CrossRef] [Green Version]
- Dávid, H.; Andrea, K.; József, D.; Katalin, S.; Róbert, S.; Péter, Z.; Gábor, P.; Péter, G. Revised Mechanism of Complement Lectin-Pathway Activation Revealing the Role of Serine Protease MASP-1 as the Exclusive Activator of MASP-2. Proc. Natl. Acad. Sci. USA 2012, 109, 10498–10503. [Google Scholar] [CrossRef] [Green Version]
- Helske, S.; Oksjoki, R.; Lindstedt, K.A.; Lommi, J.; Turto, H.; Werkkala, K.; Kupari, M.; Kovanen, P.T. Complement System Is Activated in Stenotic Aortic Valves. Atherosclerosis 2008, 196, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Miao, Y.; Gong, K.; Cheng, X.; Chen, Y.; Zhao, M.-H. Plasma Complement Protein C3a Level Was Associated with Abdominal Aortic Calcification in Patients on Hemodialysis. J. Cardiovasc. Transl. Res. 2019, 12, 496–505. [Google Scholar] [CrossRef]
- Kalbasi Anaraki, P.; Patecki, M.; Larmann, J.; Tkachuk, S.; Jurk, K.; Haller, H.; Theilmeier, G.; Dumler, I. Urokinase Receptor Mediates Osteogenic Differentiation of Mesenchymal Stem Cells and Vascular Calcification via the Complement C5a Receptor. Stem Cells Dev. 2014, 23, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Davies, C.A.; Herrick, A.L.; Cordingley, L.; Freemont, A.J.; Jeziorska, M. Expression of Advanced Glycation End Products and Their Receptor in Skin from Patients with Systemic Sclerosis with and without Calcinosis. Rheumatology 2009, 48, 876–882. [Google Scholar] [CrossRef] [Green Version]
- Gkogkolou, P.; Böhm, M. Advanced Glycation End Products: Key Players in Skin Aging? Dermato-Endocrinol. 2012, 4, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Lohwasser, C.; Neureiter, D.; Weigle, B.; Kirchner, T.; Schuppan, D. The Receptor for Advanced Glycation End Products Is Highly Expressed in the Skin and Upregulated by Advanced Glycation End Products and Tumor Necrosis Factor-Alpha. J. Investig. Dermatol. 2006, 126, 291–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, E.; Kobayashi, T.; Fujimoto, N.; Akiyama, M.; Tajima, S.; Nagai, R. AGE-Modified Collagens I and III Induce Keratinocyte Terminal Differentiation through AGE Receptor CD36: Epidermal-Dermal Interaction in Acquired Perforating Dermatosis. J. Investig. Dermatol. 2010, 130, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.M.; Yan, S.D.; Brett, J.; Mora, R.; Nowygrod, R.; Stern, D. Regulation of Human Mononuclear Phagocyte Migration by Cell Surface-Binding Proteins for Advanced Glycation End Products. J. Clin. Investig. 1993, 91, 2155–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.; Liu, L.; Zhang, Y.; Xiang, Y.; Yin, G.; Lu, Y.; Shi, L.; Dong, J.; Shen, C. Advanced Glycation End Products Enhance Murine Monocyte Proliferation in Bone Marrow and Prime Them into an Inflammatory Phenotype through MAPK Signaling. J. Diabetes Res. 2018, 2018, 2527406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilmenyuk, T.; Bellinghausen, I.; Heydenreich, B.; Ilchmann, A.; Toda, M.; Grabbe, S.; Saloga, J. Effects of Glycation of the Model Food Allergen Ovalbumin on Antigen Uptake and Presentation by Human Dendritic Cells. Immunology 2010, 129, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Lu, S.; Niu, Y.; Xie, T.; Dong, J.; Cao, X.; Song, F. Effects of Advanced Glycation End-Products (AGEs) on Skin Keratinocytes by Nuclear Factor-Kappa B (NF-ΚB) Activation. Afr. J. Biotechnol. 2012, 11, 11132–11142. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Ma, W.-Q.; Han, X.-Q.; Wang, Y.; Wang, X.; Liu, N.-F. Advanced Glycation End Products Accelerate Calcification in VSMCs through HIF-1α/PDK4 Activation and Suppress Glucose Metabolism. Sci. Rep. 2018, 8, 13730. [Google Scholar] [CrossRef]
- Altman, K.; Shinohara, M. Demographics, Comorbid Conditions, and Outcomes of Patients with Nonuremic Calciphylaxis. JAMA Dermatol. 2019, 155, 251–252. [Google Scholar] [CrossRef]
- Bittker, S.S. Elevated Levels of 1,25-Dihydroxyvitamin D in Plasma as a Missing Risk Factor for Celiac Disease. Clin. Exp. Gastroenterol. 2020, 13, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Van Etten, E.; Mathieu, C. Immunoregulation by 1,25-Dihydroxyvitamin D3: Basic Concepts. J. Steroid Biochem. Mol. Biol. 2005, 97, 93–101. [Google Scholar] [CrossRef]
- Xu, H.; Soruri, A.; Gieseler, R.K.H.; Peters, J.H. 1,25-Dihydroxyvitamin D3 Exerts Opposing Effects to IL-4 on MHC Class-II Antigen Expression, Accessory Activity, and Phagocytosis of Human Monocytes. Scand. J. Immunol. 1993, 38, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Penna, G.; Adorini, L. 1 Alpha,25-Dihydroxyvitamin D3 Inhibits Differentiation, Maturation, Activation, and Survival of Dendritic Cells Leading to Impaired Alloreactive T Cell Activation. J. Immunol. 2000, 164, 2405–2411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazár, B.; Ea, H.-K.; Narayan, S.; Kolly, L.; Bagnoud, N.; Chobaz, V.; Roger, T.; Lioté, F.; So, A.; Busso, N. Basic Calcium Phosphate Crystals Induce Monocyte/Macrophage IL-1β Secretion through the NLRP3 Inflammasome In Vitro. J. Immunol. 2011, 186, 2495–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakim, I.; Bar-Shavit, Z. Modulation of TNF-α Expression in Bone Marrow Macrophages: Involvement of Vitamin D Response Element. J. Cell. Biochem. 2003, 88, 986–998. [Google Scholar] [CrossRef]
- Antal, A.S.; Dombrowski, Y.; Koglin, S.; Ruzicka, T.; Schauber, J. Impact of Vitamin D3 on Cutaneous Immunity and Antimicrobial Peptide Expression. Dermato-Endocrinol. 2011, 3, 18–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.-T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; et al. Cutting Edge: 1,25-Dihydroxyvitamin D3 Is a Direct Inducer of Antimicrobial Peptide Gene Expression. J. Immunol. 2004, 173, 2909–2912. [Google Scholar] [CrossRef] [Green Version]
- Chernomordik, F.; Cercek, B.; Lio, W.M.; Mihailovic, P.M.; Yano, J.; Herscovici, R.; Zhao, X.; Zhou, J.; Chyu, K.-Y.; Shah, P.K.; et al. The Role of T Cells Reactive to the Cathelicidin Antimicrobial Peptide LL-37 in Acute Coronary Syndrome and Plaque Calcification. Front. Immunol. 2020, 11, 575577. [Google Scholar] [CrossRef]
- Hruska, K.A.; Mathew, S.; Lund, R.; Qiu, P.; Pratt, R. Hyperphosphatemia of Chronic Kidney Disease. Kidney Int. 2008, 74, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Rapa, S.F.; Di Iorio, B.R.; Campiglia, P.; Heidland, A.; Marzocco, S. Inflammation and Oxidative Stress in Chronic Kidney Disease-Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int. J. Mol. Sci. 2019, 21, 263. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.X.; O’Neill, K.; Akl, N.K.; Moe, S.M. Adipocyte Induced Arterial Calcification Is Prevented with Sodium Thiosulfate. Biochem. Biophys. Res. Commun. 2014, 449, 151–156. [Google Scholar] [CrossRef]
- Adesso, S.; Popolo, A.; Bianco, G.; Sorrentino, R.; Pinto, A.; Autore, G.; Marzocco, S. The Uremic Toxin Indoxyl Sulphate Enhances Macrophage Response to LPS. PLoS ONE 2013, 8, e76778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockler-Pinto, M.B.; Saldanha, J.F.; Yi, D.; Mafra, D.; Fouque, D.; Soulage, C.O. The Uremic Toxin Indoxyl Sulfate Exacerbates Reactive Oxygen Species Production and Inflammation in 3T3-L1 Adipose Cells. Free Radic. Res. 2016, 50, 337–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahnen-Dechent, W.; Heiss, A.; Schäfer, C.; Ketteler, M.; Towler, D.A. Fetuin-A Regulation of Calcified Matrix Metabolism. Circ. Res. 2011, 108, 1494–1509. [Google Scholar] [CrossRef]
- Bjørklund, G.; Svanberg, E.; Dadar, M.; Card, D.J.; Chirumbolo, S.; Harrington, D.J.; Aaseth, J. The Role of Matrix Gla Protein (MGP) in Vascular Calcification. Curr. Med. Chem. 2020, 27, 1647–1660. [Google Scholar] [CrossRef] [PubMed]
- Sowers, K.M.; Hayden, M.R. Calcific Uremic Arteriolopathy: Pathophysiology, Reactive Oxygen Species and Therapeutic Approaches. Oxid. Med. Cell. Longev. 2010, 3, 329291. [Google Scholar] [CrossRef] [Green Version]
- Chung, M.P.; Richardson, C.; Kirakossian, D.; Orandi, A.B.; Saketkoo, L.A.; Rider, L.G.; Schiffenbauer, A.; von Mühlen, C.A.; Chung, L.; Assessment, I.M.; et al. Calcinosis Biomarkers in Adult and Juvenile Dermatomyositis. Autoimmun. Rev. 2020, 19, 102533. [Google Scholar] [CrossRef] [PubMed]
- Balin, S.J.; Wetter, D.A.; Andersen, L.K.; Davis, M.D.P. Calcinosis Cutis Occurring in Association with Autoimmune Connective Tissue Disease: The Mayo Clinic Experience with 78 Patients, 1996–2009. Arch. Dermatol. 2012, 148, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Domínguez, M.P.; García-Collinot, G.; Saavedra, M.A.; Medina, G.; Carranza-Muleiro, R.A.; Vera-Lastra, O.L.; Jara, L.J. Clinical, Biochemical, and Radiological Characterization of the Calcinosis in a Cohort of Mexican Patients with Systemic Sclerosis. Clin. Rheumatol. 2017, 36, 111–117. [Google Scholar] [CrossRef]
- Morgan, N.D.; Shah, A.A.; Mayes, M.D.; Domsic, R.T.; Medsger, T.A., Jr.; Steen, V.D.; Varga, J.; Carns, M.; Ramos, P.S.; Silver, R.M.; et al. Clinical and Serological Features of Systemic Sclerosis in a Multicenter African American Cohort: Analysis of the Genome Research in African American Scleroderma Patients Clinical Database. Medicine 2017, 96, e8980. [Google Scholar] [CrossRef]
- Baron, M.; Pope, J.; Robinson, D.; Jones, N.; Khalidi, N.; Docherty, P.; Kaminska, E.; Masetto, A.; Sutton, E.; Mathieu, J.-P.; et al. Calcinosis Is Associated with Digital Ischaemia in Systemic Sclerosis-a Longitudinal Study. Rheumatology 2016, 55, 2148–2155. [Google Scholar] [CrossRef] [Green Version]
- Tolosa-Vilella, C.; Morera-Morales, M.L.; Simeón-Aznar, C.P.; Marí-Alfonso, B.; Colunga-Arguelles, D.; Callejas Rubio, J.L.; Rubio-Rivas, M.; Freire-Dapena, M.; Guillén-Del Castillo, A.; Iniesta-Arandia, N.; et al. Digital Ulcers and Cutaneous Subsets of Systemic Sclerosis: Clinical, Immunological, Nailfold Capillaroscopy, and Survival Differences in the Spanish RESCLE Registry. Semin. Arthritis Rheum. 2016, 46, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Gunawardena, H.; Betteridge, Z.E.; McHugh, N.J. Myositis-Specific Autoantibodies: Their Clinical and Pathogenic Significance in Disease Expression. Rheumatology 2009, 48, 607–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nombel, A.; Fabien, N.; Coutant, F. Dermatomyositis With Anti-MDA5 Antibodies: Bioclinical Features, Pathogenesis and Emerging Therapies. Front. Immunol. 2021, 12, 773352. [Google Scholar] [CrossRef] [PubMed]
- Zahn, S.; Barchet, W.; Rehkämper, C.; Hornung, T.; Bieber, T.; Tüting, T.; Wenzel, J. Enhanced Skin Expression of Melanoma Differentiation-Associated Gene 5 (MDA5) in Dermatomyositis and Related Autoimmune Diseases. J. Am. Acad. Dermatol. 2011, 64, 988–989. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, J.; Tüting, T. An IFN-Associated Cytotoxic Cellular Immune Response against Viral, Self-, or Tumor Antigens Is a Common Pathogenetic Feature in “Interface Dermatitis”. J. Investig. Dermatol. 2008, 128, 2392–2402. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, A.; Chung, L.; Casciola-Rosen, L.; Fiorentino, D. Identification of Clinical Features and Autoantibodies Associated with Calcinosis in Dermatomyositis. JAMA Dermatol. 2014, 150, 724–729. [Google Scholar] [CrossRef] [Green Version]
- Pisetsky, D.S. Immune Phenotypes in Individuals Positive for Antinuclear Antibodies: The Impact of Race and Ethnicity. J. Allergy Clin. Immunol. 2020, 146, 1346–1348. [Google Scholar] [CrossRef]
- Duvvuri, B.; Pachman, L.; Moore, R.; Morgan, G.; Klein-Gitelman, M.; Curran, M.L.; Doty, S.; Lood, C. Mitochondrial Contribution to Juvenile Dermatomyositis Pathogenesis. In Proceedings of the Arthritis & Rheumatology, Hoboken, NJ, USA, 12 November 2019; Volume 71. [Google Scholar]
- Glennon, N.B.; Jabado, O.; Lo, M.K.; Shaw, M.L. Transcriptome Profiling of the Virus-Induced Innate Immune Response in Pteropus Vampyrus and Its Attenuation by Nipah Virus Interferon Antagonist Functions. J. Virol. 2022, 89, 7550–7566. [Google Scholar] [CrossRef] [Green Version]
- Paradowska-Gorycka, A. U1-RNP and Toll-like Receptors in the Pathogenesis of Mixed Connective Tissue DiseasePart II. Endosomal TLRs and Their Biological Significance in the Pathogenesis of Mixed Connective Tissue Disease. Reumatologia 2015, 53, 143–151. [Google Scholar] [CrossRef]
- Gentili, M.; Lahaye, X.; Nadalin, F.; Nader, G.P.F.; Puig Lombardi, E.; Herve, S.; De Silva, N.S.; Rookhuizen, D.C.; Zueva, E.; Goudot, C.; et al. The N-Terminal Domain of CGAS Determines Preferential Association with Centromeric DNA and Innate Immune Activation in the Nucleus. Cell Rep. 2019, 26, 2377–2393.e13. [Google Scholar] [CrossRef] [Green Version]
- Rialdi, A.; Campisi, L.; Zhao, N.; Lagda, A.C.; Pietzsch, C.; Ho, J.S.Y.; Martinez-Gil, L.; Fenouil, R.; Chen, X.; Edwards, M.; et al. Topoisomerase 1 Inhibition Suppresses Inflammatory Genes and Protects from Death by Inflammation. Science 2016, 352, aad7993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepin, G.; Nejad, C.; Ferrand, J.; Thomas, B.J.; Stunden, H.J.; Sanij, E.; Foo, C.-H.; Stewart, C.R.; Cain, J.E.; Bardin, P.G.; et al. Topoisomerase 1 Inhibition Promotes Cyclic GMP-AMP Synthase-Dependent Antiviral Responses. mBio 2017, 8, e01611-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunawardena, H.; Wedderburn, L.R.; North, J.; Betteridge, Z.; Dunphy, J.; Chinoy, H.; Davidson, J.E.; Cooper, R.G.; McHugh, N.J.; Juvenile Dermatomyositis Research Group UK. Clinical Associations of Autoantibodies to a P155/140 KDa Doublet Protein in Juvenile Dermatomyositis. Rheumatology 2008, 47, 324–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geoffroy, M.-C.; Chelbi-Alix, M.K. Role of Promyelocytic Leukemia Protein in Host Antiviral Defense. J. Interf. Cytokine Res. Off. J. Int. Soc. Interf. Cytokine Res. 2011, 31, 145–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaur, P.S.; Naveen, R.; Anuja, A.K.; Singh, M.K.; Rai, M.K.; Muhammed, R.; Sahu, A.K.; Agarwal, V.; Gupta, L. Anti-Mitochondrial Antibodies in Indian Patients with Idiopathic Inflammatory Myopathies. Int. J. Rheum. Dis. 2022, 25, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Björn, I.; Daniel, S.; Tobias, S.; Anita, S.; Ann-Charlotte, B.; Vesa, L.; Kourosh, L.; Mårten, S.; Giannis, S.; Anders, R. Lymphocytes Eject Interferogenic Mitochondrial DNA Webs in Response to CpG and Non-CpG Oligodeoxynucleotides of Class C. Proc. Natl. Acad. Sci. USA 2018, 115, E478–E487. [Google Scholar] [CrossRef] [Green Version]
- Pustylnikov, S.; Costabile, F.; Beghi, S.; Facciabene, A. Targeting Mitochondria in Cancer: Current Concepts and Immunotherapy Approaches. Transl. Res. 2018, 202, 35–51. [Google Scholar] [CrossRef]
- Fritzler, M.J.; Kinsella, T.D. The CREST Syndrome: A Distinct Serologic Entity with Anticentromere Antibodies. Am. J. Med. 1980, 69, 520–526. [Google Scholar] [CrossRef]
- Kajio, N.; Takeshita, M.; Suzuki, K.; Kaneda, Y.; Yamane, H.; Ikeura, K.; Sato, H.; Kato, S.; Shimizu, H.; Tsunoda, K.; et al. Anti-Centromere Antibodies Target Centromere–Kinetochore Macrocomplex: A Comprehensive Autoantigen Profiling. Ann. Rheum. Dis. 2021, 80, 651–659. [Google Scholar] [CrossRef]
- Saardi, K.M.; Rosenstein, R.K.; Anadkat, M.J.; Micheletti, R.G.; Schiffenbauer, A.I.; Pavletic, S.Z.; Cowen, E.W. Calcinosis Cutis in the Setting of Chronic Skin Graft-Versus-Host Disease. JAMA Dermatol. 2020, 156, 814–817. [Google Scholar] [CrossRef]
- Tsuchida, Y.; Sumitomo, S.; Fujio, K.; Yamamoto, K. Massive Calcinosis Cutis Associated with Primary Sjögren’s Syndrome. BMJ Case Rep. 2016, 2016, bcr2015214006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eastham, A.B.; Velez, N.F.; Chesebro, A.L.; Townsend, H.B.; Vleugels, R.A. Diffuse Dystrophic Calcinosis Cutis of the Scalp in a Patient with Scalp Discoid Lupus Erythematosus and Systemic Lupus Erythematosus. JAMA Dermatol. 2013, 149, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Charles, N.; Hardwick, D.; Daugas, E.; Illei, G.G.; Rivera, J. Basophils and the T Helper 2 Environment Can Promote the Development of Lupus Nephritis. Nat. Med. 2010, 16, 701–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itoh, O.; Nishimaki, T.; Itoh, M.; Ohira, H.; Irisawa, A.; Kaise, S.; Kasukawa, R. Mixed Connective Tissue Disease with Severe Pulmonary Hypertension and Extensive Subcutaneous Calcification. Intern. Med. 1998, 37, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Goolamali, S.I.; Gordon, P.; Salisbury, J.; Creamer, D. Subcutaneous Calcification Presenting in a Patient with Mixed Connective Tissue Disease and Cutaneous Polyarteritis Nodosa. Clin. Exp. Dermatol. 2009, 34, e141–e144. [Google Scholar] [CrossRef]
- Ashraf, M.; Gopikrishnan, K.; Umamahesvaran, B.; Sambandam, S.N. Presentation of Calcinosis Cutis Universalis in Mixed Connective Tissue Disorder: An Encounter during Hip Arthroplasty. BMJ Case Rep. 2017, 2017, bcr2017219278. [Google Scholar] [CrossRef]
- Greidinger, E.L.; Zang, Y.; Jaimes, K.; Hogenmiller, S.; Nassiri, M.; Bejarano, P.; Barber, G.N.; Hoffman, R.W. A Murine Model of Mixed Connective Tissue Disease Induced with U1 Small Nuclear RNP Autoantigen. Arthritis Rheum. 2006, 54, 661–669. [Google Scholar] [CrossRef]
- Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. 2008, 83, 1032–1045. [Google Scholar] [CrossRef] [Green Version]
- Tayfur, A.C.; Topaloglu, R.; Gulhan, B.; Bilginer, Y. Bisphosphonates in Juvenile Dermatomyositis with Dystrophic Calcinosis. Mod. Rheumatol. 2015, 25, 615–620. [Google Scholar] [CrossRef]
- Saini, I.; Kalaivani, M.; Kabra, S.K. Calcinosis in Juvenile Dermatomyositis: Frequency, Risk Factors and Outcome. Rheumatol. Int. 2016, 36, 961–965. [Google Scholar] [CrossRef]
- Metzger, A.L.; Singer, F.R.; Bluestone, R.; Pearson, C.M. Failure of Disodium Etidronate in Calcinosis Due to Dermatomyositis and Scleroderma. N. Engl. J. Med. 1974, 291, 1294–1296. [Google Scholar] [CrossRef] [PubMed]
- Patntirapong, S.; Phupunporn, P.; Vanichtantiphong, D.; Thanetchaloempong, W. Inhibition of Macrophage Viability by Bound and Free Bisphosphonates. Acta Histochem. 2019, 121, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.; Rogers, M.J.; Coxon, F.P.; Crockett, J.C. Cytosolic Entry of Bisphosphonate Drugs Requires Acidification of Vesicles after Fluid-Phase Endocytosis. Mol. Pharmacol. 2006, 69, 1624–1632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, T.L.; Holen, I. Tumour Macrophages as Potential Targets of Bisphosphonates. J. Transl. Med. 2011, 9, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, K.E.; Kuepper, J.M.; Schumak, B.; Alferink, J.; Hofmann, A.; Howland, S.W.; Renia, L.; Limmer, A.; Specht, S.; Hoerauf, A. Doxycycline Inhibits Experimental Cerebral Malaria by Reducing Inflammatory Immune Reactions and Tissue-Degrading Mediators. PLoS ONE 2018, 13, e0192717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Shigemi, H.; Tanaka, Y.; Yamauchi, T.; Ueda, T.; Iwasaki, H. Tetracyclines Downregulate the Production of LPS-Induced Cytokines and Chemokines in THP-1 Cells via ERK, P38, and Nuclear Factor-ΚB Signaling Pathways. Biochem. Biophys. Rep. 2015, 4, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Reiter, N.; El-Shabrawi, L.; Leinweber, B.; Berghold, A.; Aberer, E. Calcinosis Cutis: Part II. Treatment Options. J. Am. Acad. Dermatol. 2011, 65, 15–22. [Google Scholar] [CrossRef]
- Leung, Y.Y.; Yao Hui, L.L.; Kraus, V.B. Colchicine—Update on Mechanisms of Action and Therapeutic Uses. Semin. Arthritis Rheum. 2015, 45, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, D.; Fruchter, L.; Fishel, B.; Holtzman, M.; Yaron, M. Colchicine Suppression of Local Inflammation Due to Calcinosis in Dermatomyositis and Progressive Systemic Sclerosis. Clin. Rheumatol. 1986, 5, 527–530. [Google Scholar]
- Stahn, C.; Löwenberg, M.; Hommes, D.W.; Buttgereit, F. Molecular Mechanisms of Glucocorticoid Action and Selective Glucocorticoid Receptor Agonists. Mol. Cell. Endocrinol. 2007, 275, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Ledon, J.A.; Savas, J.; Franca, K.; Chacon, A.; Nouri, K. Intralesional Treatment for Keloids and Hypertrophic Scars: A Review. Dermatol. Surg. 2013, 39, 1745–1757. [Google Scholar] [CrossRef] [PubMed]
- Quinti, I.; Mitrevski, M. Modulatory Effects of Antibody Replacement Therapy to Innate and Adaptive Immune Cells. Front. Immunol. 2017, 8, 697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayry, J.; Lacroix-Desmazes, S.; Carbonneil, C.; Misra, N.; Donkova, V.; Pashov, A.; Chevailler, A.; Mouthon, L.; Weill, B.; Bruneval, P.; et al. Inhibition of Maturation and Function of Dendritic Cells by Intravenous Immunoglobulin. Blood 2003, 101, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Williams, P.; Batchelor, R.; Downs, A.; Haigh, R. Successful Treatment of Dermatomyositis and Associated Calcinosis with Adalimumab. Clin. Exp. Dermatol. 2020, 45, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Tosounidou, S.; MacDonald, H.; Situnayake, D. Successful Treatment of Calcinosis with Infliximab in a Patient with Systemic Sclerosis/Myositis Overlap Syndrome. Rheumatology 2014, 53, 960–961. [Google Scholar] [CrossRef] [Green Version]
- Robertson, L.; Marshall, R.; Hickling, P. Treatment Cutaneous Calcinosis in Limited Systemic Sclerosis with Minocyclin. Ann. Rheum. Dis. 2003, 62, 267–269. [Google Scholar] [CrossRef] [Green Version]
- Cho, D.-H.; Lee, W.-H.; Park, S.-J. Treatment of Calcinosis Cutis with Minocycline in Five Dogs. J. Vet. Clin. 2017, 34, 119–122. [Google Scholar] [CrossRef]
- Reiter, N.; El-Shabrawi, L.; Leinweber, B.; Aberer, E. Subcutaneous Morphea with Dystrophic Calcification with Response to Ceftriaxone Treatment. J. Am. Acad. Dermatol. 2010, 63, e53–e55. [Google Scholar] [CrossRef]
- Ochoa-Aguilar, A.; Ventura-Martinez, R.; Sotomayor-Sobrino, M.A.; Jaimez, R.; Coffeen, U.; Jiménez-González, A.; Balcázar-Ochoa, L.G.; Pérez-Medina-Carballo, R.; Rodriguez, R.; Plancarte-Sánchez, R. Ceftriaxone and Clavulanic Acid Induce Antiallodynia and Anti-Inflammatory Effects in Rats Using the Carrageenan Model. J. Pain Res. 2018, 11, 977–985. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, J.; Le Jan, S.; Muller, C.; François, C.; Renard, Y.; Durlach, A.; Bernard, P.; Reguiai, Z.; Antonicelli, F. Matrix Remodelling and MMP Expression/Activation Are Associated with Hidradenitis Suppurativa Skin Inflammation. Exp. Dermatol. 2019, 28, 593–600. [Google Scholar] [CrossRef]
- Parks, W.C.; Wilson, C.L.; López-Boado, Y.S. Matrix Metalloproteinases as Modulators of Inflammation and Innate Immunity. Nat. Rev. Immunol. 2004, 4, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.X.; O’Neill, K.D.; Chen, X.; Kiattisunthorn, K.; Gattone, V.H.; Moe, S.M. Activation of Arterial Matrix Metalloproteinases Leads to Vascular Calcification in Chronic Kidney Disease. Am. J. Nephrol. 2011, 34, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Fredi, M.; Bartoli, F.; Cavazzana, I.; Ceribelli, A.; Carabellese, N.; Tincani, A.; Satoh, M.; Franceschini, F. Calcinosis in Poly-Dermatomyositis: Clinical and Laboratory Predictors and Treatment Options. Clin. Exp. Rheumatol. 2017, 35, 303–308. [Google Scholar] [PubMed]
- Dupuis, J.; Sirois, M.G.; Rhéaume, E.; Nguyen, Q.T.; Clavet-Lanthier, M.-É.; Brand, G.; Mihalache-Avram, T.; Théberge-Julien, G.; Charpentier, D.; Rhainds, D.; et al. Colchicine Reduces Lung Injury in Experimental Acute Respiratory Distress Syndrome. PLoS ONE 2020, 15, e0242318. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, K.; Tucker, B.; Kurup, R.; Khandkar, C.; Pandzic, E.; Barraclough, J.; Machet, J.; Misra, A.; Kavurma, M.; Martinez, G.; et al. Colchicine Inhibits Neutrophil Extracellular Trap Formation in Patients with Acute Coronary Syndrome after Percutaneous Coronary Intervention. J. Am. Heart Assoc. 2021, 10, e018993. [Google Scholar] [CrossRef]
- Lee, S.S.; Felsenstein, J.; Tanzer, F.R. Calcinosis Cutis Circumscripta: Treatment with an Intralesional Corticosteroid. Arch. Dermatol. 1978, 114, 1080–1081. [Google Scholar] [CrossRef]
- Hazen, P.G.; Walker, A.E.; Carney, J.F.; Stewart, J.J. Cutaneous Calcinosis of Scleroderma: Successful Treatment with Intralesional Adrenal Steroids. Arch. Dermatol. 1982, 118, 366–367. [Google Scholar] [CrossRef]
- Al-Mayouf, S.M.; Alsonbul, A.; Alismail, K. Localized Calcinosis in Juvenile Dermatomyositis: Successful Treatment with Intralesional Corticosteroids Injection. Int. J. Rheum. Dis. 2010, 13, e26–e28. [Google Scholar] [CrossRef]
- Schanz, S.; Ulmer, A.; Fierlbeck, G. Response of Dystrophic Calcification to Intravenous Immunoglobulin. Arch. Dermatol. 2008, 144, 585–587. [Google Scholar] [CrossRef] [Green Version]
- Peñate, Y.; Guillermo, N.; Melwani, P.; Martel, R.; Hernández-Machín, B.; Borrego, L. Calcinosis Cutis Associated with Amyopathic Dermatomyositis: Response to Intravenous Immunoglobulin. J. Am. Acad. Dermatol. 2009, 60, 1076–1077. [Google Scholar] [CrossRef]
- Kalajian, A.H.; Perryman, J.H.; Callen, J.P. Intravenous Immunoglobulin Therapy for Dystrophic Calcinosis Cutis: Unreliable in Our Hands. Arch. Dermatol. 2009, 145, 334. [Google Scholar] [CrossRef] [PubMed]
- Galimberti, F.; Li, Y.; Fernandez, A.P. Intravenous Immunoglobulin for Treatment of Dermatomyositis-Associated Dystrophic Calcinosis. J. Am. Acad. Dermatol. 2015, 73, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Von Gunten, S.; Simon, H.-U. Cell Death Modulation by Intravenous Immunoglobulin. J. Clin. Immunol. 2010, 30 (Suppl. 1), S24–S30. [Google Scholar] [CrossRef] [PubMed]
- Giuggioli, D.; Lumetti, F.; Colaci, M.; Fallahi, P.; Antonelli, A.; Ferri, C. Rituximab in the Treatment of Patients with Systemic Sclerosis. Our Experience and Review of the Literature. Autoimmun. Rev. 2015, 14, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Moazedi-Fuerst, F.C.; Kielhauser, S.M.; Bodo, K.; Graninger, W.B. Dosage of Rituximab in Systemic Sclerosis: 2-Year Results of Five Cases. Clin. Exp. Dermatol. 2015, 40, 211–212. [Google Scholar] [CrossRef] [PubMed]
- Bader-Meunier, B.; Decaluwe, H.; Barnerias, C.; Gherardi, R.; Quartier, P.; Faye, A.; Guigonis, V.; Pagnier, A.; Brochard, K.; Sibilia, J.; et al. Safety and Efficacy of Rituximab in Severe Juvenile Dermatomyositis: Results from 9 Patients from the French Autoimmunity and Rituximab Registry. J. Rheumatol. 2011, 38, 1436–1440. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Loganathan, P.; Koontz, D.; Qi, Z.; Reed, A.M.; Oddis, C. V Cutaneous Improvement in Refractory Adult and Juvenile Dermatomyositis after Treatment with Rituximab. Rheumatology 2017, 56, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Miyagawa, I.; Nakayamada, S.; Nakano, K.; Kubo, S.; Iwata, S.; Miyazaki, Y.; Yoshikawa, M.; Yoshinari, H.; Tanaka, Y. Precision Medicine Using Different Biological DMARDs Based on Characteristic Phenotypes of Peripheral T Helper Cells in Psoriatic Arthritis. Rheumatology 2019, 58, 336–344. [Google Scholar] [CrossRef]
- Throm, A.A.; Alinger, J.B.; Pingel, J.T.; Daugherty, A.L.; Pachman, L.M.; French, A.R. Dysregulated NK Cell PLCγ2 Signaling and Activity in Juvenile Dermatomyositis. JCI Insight 2018, 3, e123236. [Google Scholar] [CrossRef] [Green Version]
Disease | Autoantibody | Role in Innate Immunity | References |
---|---|---|---|
All | Anti-nuclear | a Forms immune complexes with cognate antigens, inducing the production of type I IFNs and other cytokines | [67] |
Dermatomyositis | Anti-MDA5 | b Senses viral RNA and induces type I IFN production b Stimulates chemotaxis of CXCR3+ lymphocytes to the dermoepidermal junction | [63,64,65] |
Anti-mitochondrial | a Forms immune complexes with mtDNA, inducing IL-8 production and NET formation | [68] | |
Anti-NXP2 | b Binds RNA and regulates transcription by localization of PML nuclear bodies | [69] | |
MCTD | Anti-U1-RNP | a Forms immune complexes with cognate antigens, inducing the production of proinflammatory cytokines | [70] |
Systemic sclerosis | Anti-centromere (centromere-kinetochore macrocomplex) | b Associates with nuclear cGAS, activating STING and stimulating NF-κB and IRF3 expression | [71] |
Anti-DNA topoisomerase I | b Activates the transcription of proinflammatory genes via positive regulation of RNA polymerase II b Triggers antiviral immunity through cGAS-STING signaling * | [72,73] |
Treatment | Subclass | Mechanism | References |
---|---|---|---|
Bisphosphonates | - | Reduces monocyte/macrophage cell number and viability and induces apoptosis | [93] |
Antibiotics | Minocycline | Reduces TNF-α, IL-1, and IL-6, inhibits neutrophil chemotaxis, and suppresses of MMP activity | [96,97,98] |
Ceftriaxone | Reduces TNF-α and suppresses MMP activity | [98] | |
Colchicine | - | Inhibits neutrophil chemotaxis and NETosis, suppresses NLRP3 inflammasome activation, and reduces proinflammatory cytokine release by macrophages | [99,100] |
Corticosteroids | - | Reduces pro-inflammatory cytokine release, decreases circulating innate immune cells, and suppresses fibroblast growth and TGF-β1 production Reduces vessel permeability | [101,102] |
IVIG | - | Suppresses the production of pro-inflammatory cytokines in CD16+ intermediate monocytes Inhibits DC maturation and differentiation, reducing IL-12 secretion and the expression of costimulatory molecules | [103,104] |
Biologics | Adalimumab | Inhibits TNF-α | [105] |
Infliximab | Inhibits TNF-α | [106] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.W.; Petty, A.J.; Nicholas, M.W. Innate Immunity in Calcinosis Cutis. Immuno 2022, 2, 443-459. https://doi.org/10.3390/immuno2030027
Jiang SW, Petty AJ, Nicholas MW. Innate Immunity in Calcinosis Cutis. Immuno. 2022; 2(3):443-459. https://doi.org/10.3390/immuno2030027
Chicago/Turabian StyleJiang, Simon W., Amy J. Petty, and Matilda W. Nicholas. 2022. "Innate Immunity in Calcinosis Cutis" Immuno 2, no. 3: 443-459. https://doi.org/10.3390/immuno2030027
APA StyleJiang, S. W., Petty, A. J., & Nicholas, M. W. (2022). Innate Immunity in Calcinosis Cutis. Immuno, 2(3), 443-459. https://doi.org/10.3390/immuno2030027