Rosuvastatin Intervention in Patients with Chronic Hepatitis B (CHB) Expands CD14+ CD16− Classical Monocytes via Aryl Hydrocarbon Receptor (AHR)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Selection and Characteristics
2.2. Immunophenotyping of Monocytes by Flowcytometry
2.3. ELISA Cytokine Assay
2.4. Gene Expression Analysis
2.5. Statistical Assessment
3. Results
3.1. The Administration of Rosuvastatin Led to an Increase in CD14+ CD16− Classical Monocytes and a Decrease in CD14+ CD16+ Intermediate Monocytes in CHB Patients
3.2. Rosuvastatin Treatment Resulted in Elevated Percentages of AHR+ Cells across All Monocyte Subgroups in CHB Patients
3.3. Rosuvastatin Treatment Modified the Levels of Pro- and Anti-Inflammatory Cytokines
3.4. RSV Treatment Activates AHR Signaling in CHB Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seto, W.-K.; Lo, Y.-R.; Pawlotsky, J.-M.; Yuen, M.-F. Chronic hepatitis B virus infection. Lancet 2018, 392, 2313–2324. [Google Scholar] [CrossRef] [PubMed]
- Mohebbi, A.; Mohammadi, S.; Memarian, A.J.V. Prediction of HBF-0259 interactions with hepatitis B Virus receptors and surface antigen secretory factors. VirusDisease 2016, 27, 234–241. [Google Scholar] [CrossRef]
- Zampino, R.; Boemio, A.; Sagnelli, C.; Alessio, L.; Adinolfi, L.E.; Sagnelli, E.; Coppola, N. Hepatitis B virus burden in developing countries. World J. Gastroenterol. 2015, 21, 11941. [Google Scholar] [CrossRef]
- Bertoletti, A.; Gehring, A.J. The immune response during hepatitis B virus infection. J. Gen. Virol. 2006, 87, 1439–1449. [Google Scholar] [CrossRef]
- Dembek, C.; Protzer, U.; Roggendorf, M. Overcoming immune tolerance in chronic hepatitis B by therapeutic vaccination. Curr. Opin. Virol. 2018, 30, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Li, T.-Y.; Yang, Y.; Zhou, G.; Tu, Z.-K. Immune suppression in chronic hepatitis B infection associated liver disease: A review. World J. Gastroenterol. 2019, 25, 3527. [Google Scholar] [CrossRef] [PubMed]
- Sprengers, D.; Janssen, H. Immunomodulatory therapy for chronic hepatitis B virus infection. Fundam. Clin. Pharmacol. 2005, 19, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Suslov, A.; Wieland, S.; Menne, S. Modulators of innate immunity as novel therapeutics for treatment of chronic hepatitis B. Curr. Opin. Virol. 2018, 30, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Shokoohifar, N.; Ahmady-Asbchin, S.; Besharat, S.; Roudbari, F.; Mohammadi, S.; Amiriani, T.; Khodabakhshi, B.; Norouzi, A.; Shahabinasab, I. The Impaired Balance of CD4+/CD8+ Ratio in Patients with Chronic Hepatitis B. Hepat. Mon. 2020, 20, e96799. [Google Scholar] [CrossRef]
- Kumar, A. Innate immune responses in hepatitis B virus (HBV) infection. Virol. J. 2014, 11, 22. [Google Scholar]
- Xu, X.-W.; Chen, Y.-G. Current therapy with nucleoside/nucleotide analogs for patients with chronic hepatitis B. Hepatobiliary Pancreat. Dis. Int. HBPD INT 2006, 5, 350–359. [Google Scholar] [PubMed]
- Tan, G.; Song, H.; Xu, F.; Cheng, G. When hepatitis B virus meets interferons. Front. Microbiol. 2018, 9, 1611. [Google Scholar] [CrossRef]
- Chen, G.F.; Wang, C.; Lau, G. Treatment of chronic hepatitis B infection-2017. Liver Int. 2017, 37, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Minutti, C.M.; Jackson-Jones, L.H.; García-Fojeda, B.; Knipper, J.A.; Sutherland, T.E.; Logan, N.; Ringqvist, E.; Guillamat-Prats, R.; Ferenbach, D.A.; Artigas, A.J.S. Local amplifiers of IL-4Rα–mediated macrophage activation promote repair in lung and liver. Science 2017, 356, 1076–1080. [Google Scholar] [CrossRef]
- Li, T.; Liang, Y.; Zhang, M.; Liu, F.; Zhang, L.; Yang, B.; Wang, L. Nucleoside/nucleotide analog consolidation therapy in hepatitis B e-antigen positive chronic hepatitis B patients: Three years should be preferred. Hepatol. Res. 2021, 51, 633–640. [Google Scholar] [CrossRef]
- Babania, O.; Mohammadi, S.; Yaghoubi, E.; Sohrabi, A.; Sadat Seyedhosseini, F.; Abdolahi, N.; Yazdani, Y. The expansion of CD14+ CD163+ subpopulation of monocytes and myeloid cells-associated cytokine imbalance; candidate diagnostic biomarkers for celiac disease (CD). J. Clin. Lab. Anal. 2021, 35, e23984. [Google Scholar] [CrossRef]
- Khanam, A.; Chua, J.V.; Kottilil, S. Immunopathology of chronic hepatitis B infection: Role of innate and adaptive immune response in disease progression. Int. J. Mol. Sci. 2021, 22, 5497. [Google Scholar] [CrossRef] [PubMed]
- Riordan, S.M.; Skinner, N.; Kurtovic, J.; Locarnini, S.; Visvanathan, K. Reduced expression of toll-like receptor 2 on peripheral monocytes in patients with chronic hepatitis B. Clin. Vaccine Immunol. 2006, 13, 972–974. [Google Scholar] [CrossRef]
- Li, N.; Li, Q.; Qian, Z.; Zhang, Y.; Chen, M.; Shi, G. Impaired TLR3/IFN-β signaling in monocyte-derived dendritic cells from patients with acute-on-chronic hepatitis B liver failure: Relevance to the severity of liver damage. Biochem. Biophys. Res. Commun. 2009, 390, 630–635. [Google Scholar] [CrossRef]
- Balmasova, I.P.; Yushchuk, N.D.; Mynbaev, O.A.; Alla, N.R.; Malova, E.S.; Shi, Z.; Gao, C.-L. Immunopathogenesis of chronic hepatitis B. World J. Gastroenterol. WJG 2014, 20, 14156. [Google Scholar] [CrossRef]
- Kapellos, T.S.; Bonaguro, L.; Gemünd, I.; Reusch, N.; Saglam, A.; Hinkley, E.R.; Schultze, J.L. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front. Immunol. 2019, 10, 2035. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, S.; Schwerin, W.; Rohwer, A.; Hoffmann, S.; Weyer, S.; Weth, R.; Meisel, H.; Diepolder, H.; Geissler, M.; Galle, P.R. Phenotype and function of monocyte derived dendritic cells in chronic hepatitis B virus infection. J. Gen. Virol. 2004, 85, 2829–2836. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.L.; Tai, J.J.-Y.; Wong, W.-C.; Han, H.; Sem, X.; Yeap, W.-H.; Kourilsky, P.; Wong, S.-C. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood J. Am. Soc. Hematol. 2011, 118, e16–e31. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.A.; Zhang, Y.; Fullerton, J.N.; Boelen, L.; Rongvaux, A.; Maini, A.A.; Bigley, V.; Flavell, R.A.; Gilroy, D.W.; Asquith, B. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 2017, 214, 1913–1923. [Google Scholar] [CrossRef]
- Tak, T.; Drylewicz, J.; Conemans, L.; de Boer, R.J.; Koenderman, L.; Borghans, J.A.; Tesselaar, K. Circulatory and maturation kinetics of human monocyte subsets in vivo. Blood J. Am. Soc. Hematol. 2017, 130, 1474–1477. [Google Scholar] [CrossRef] [PubMed]
- Tak, T.; Van Groenendael, R.; Pickkers, P.; Koenderman, L. Monocyte subsets are differentially lost from the circulation during acute inflammation induced by human experimental endotoxemia. J. Innate Immun. 2017, 9, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.; Han, C.Z.; Glass, C.K.; Pollard, J.W. Monocyte regulation in homeostasis and malignancy. Trends Immunol. 2021, 42, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, H.; Jamshidi, A.; Ghatee, M.A.; Mazhab-Jafari, K.; Khorasani, M.; Rahmati, M.; Mohammadi, S. PPARγ activation by pioglitazone enhances the anti-proliferative effects of doxorubicin on pro-monocytic THP-1 leukemia cells via inducing apoptosis and G2/M cell cycle arrest. J. Recept. Signal Transduct. 2022, 42, 429–438. [Google Scholar] [CrossRef]
- Mohammadi, S.; Memarian, A.; Sedighi, S.; Behnampour, N.; Yazdani, Y. Immunoregulatory effects of indole-3-carbinol on monocyte-derived macrophages in systemic lupus erythematosus: A crucial role for aryl hydrocarbon receptor. Autoimmunity 2018, 51, 199–209. [Google Scholar] [CrossRef]
- Goudot, C.; Coillard, A.; Villani, A.C.; Gueguen, P.; Cros, A.; Sarkizova, S.; Tang-Huau, T.L.; Bohec, M.; Baulande, S.; Hacohen, N.; et al. Aryl Hydrocarbon Receptor Controls Monocyte Differentiation into Dendritic Cells versus Macrophages. Immunity 2017, 47, 582–596.e586. [Google Scholar] [CrossRef]
- Gutiérrez-Vázquez, C.; Quintana, F.J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 2018, 48, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Larigot, L.; Benoit, L.; Koual, M.; Tomkiewicz, C.; Barouki, R.; Coumoul, X. Aryl hydrocarbon receptor and its diverse ligands and functions: An exposome receptor. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 383–404. [Google Scholar] [CrossRef] [PubMed]
- Satny, M.; Hubacek, J.A.; Vrablik, M. Statins and inflammation. Curr. Atheroscler. Rep. 2021, 23, 80. [Google Scholar] [CrossRef] [PubMed]
- Denison, M.S.; Nagy, S.R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 2003, 43, 309–334. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Saiki, Y.; Adachi, O.; Kawamoto, S.; Fukushige, S.; Horii, A.; Saiki, Y. Single-dose rosuvastatin ameliorates lung ischemia–reperfusion injury via upregulation of endothelial nitric oxide synthase and inhibition of macrophage infiltration in rats with pulmonary hypertension. J. Thorac. Cardiovasc. Surg. 2015, 149, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, A.; Taziki, S.; Najafipasandi, A.; Mohammadi, S.; Roshandel, G. Rosuvastatin Intervention Decreased the Frequencies of the TIM-3+ Population of NK Cells and NKT Cells among Patients with Chronic Hepatitis B. Iran. J. Immunol. 2022, 19, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Sedighi, S.; Memarian, A.; Yazdani, Y. Overexpression of interferon-γ and indoleamine 2, 3-dioxygenase in systemic lupus erythematosus: Relationship with the disease activity. LaboratoriumsMedizin 2017, 41, 41–47. [Google Scholar] [CrossRef]
- Park, L.M.; Lannigan, J.; Jaimes, M.C. OMIP-069: Forty-color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytom. Part A 2020, 97, 1044–1051. [Google Scholar] [CrossRef]
- Pouresmaeil, V.; Mashayekhi, S.; Sarafraz Yazdi, M. Investigation of serum level relationship anti-glutamic acid decarboxylase antibody and inflammatory cytokines (IL1-β, IL-6) with vitamins D in type 2 diabetes. J. Diabetes Metab. Disord. 2022, 21, 181–187. [Google Scholar] [CrossRef]
- Mannhalter, C.; Koizar, D.; Mitterbauer, G. Evaluation of RNA isolation methods and reference genes for RT-PCR analyses of rare target RNA. Clin. Chem. Lab. Med. 2000, 38, 171–177. [Google Scholar] [CrossRef]
- Rafat, A.; Asl, K.D.; Mazloumi, Z.; Movassaghpour, A.A.; Talebi, M.; Shanehbandi, D.; Farahzadi, R.; Nejati, B.; Charoudeh, H.N. Telomerase inhibition on acute myeloid leukemia stem cell induced apoptosis with both intrinsic and extrinsic pathways. Life Sci. 2022, 295, 120402. [Google Scholar] [CrossRef] [PubMed]
- Naji, E.; Fadajan, Z.; Afshar, D.; Fazeli, M. Comparison of reverse transcription loop-mediated isothermal amplification method with SYBR green real-time RT-PCR and direct fluorescent antibody test for diagnosis of rabies. Jpn. J. Infect. Dis. 2020, 73, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Akyıldız, M.; Ahıskalı, E.; Zeybel, M.; Yurdaydın, C. Regional epidemiology, burden, and management of hepatitis B virus in the Middle East. Clin. Liver Dis. 2019, 14, 212. [Google Scholar] [CrossRef] [PubMed]
- Raptopoulou, M.; Papatheodoridis, G.; Antoniou, A.; Ketikoglou, J.; Tzourmakliotis, D.; Vasiliadis, T.; Manolaki, N.; Nikolopoulou, G.; Manesis, E.; Pierroutsakos, I. Epidemiology, course and disease burden of chronic hepatitis B virus infection. HEPNET study for chronic hepatitis B: A multicentre Greek study. J. Viral Hepat. 2009, 16, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Bonnardel, J.; Da Silva, C.; Henri, S.; Tamoutounour, S.; Chasson, L.; Montañana-Sanchis, F.; Gorvel, J.-P.; Lelouard, H. Innate and adaptive immune functions of peyer’s patch monocyte-derived cells. Cell Rep. 2015, 11, 770–784. [Google Scholar] [CrossRef] [PubMed]
- Dey, D.; Pal, S.; Chakraborty, B.C.; Baidya, A.; Bhadra, S.; Ghosh, R.; Banerjee, S.; Ahammed, S.K.M.; Chowdhury, A.; Datta, S. Multifaceted Defects in Monocytes in Different Phases of Chronic Hepatitis B Virus Infection: Lack of Restoration after Antiviral Therapy. Microbiol. Spectr. 2022, 10, e0193922. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, D.C.; Fonseca, F.A.H.; Izar, M.C.O.; Silveira, A.; Tuleta, I.D.; do Amaral, J.B.; Neves, L.M.; Bachi, A.L.L.; França, C.N. Monocytes presenting a pro-inflammatory profile persist in patients submitted to a long-term pharmacological treatment after acute myocardial infarction. Front. Physiol. 2022, 13, 1056466. [Google Scholar] [CrossRef] [PubMed]
- Krychtiuk, K.A.; Kastl, S.P.; Hofbauer, S.L.; Wonnerth, A.; Goliasch, G.; Ozsvar-Kozma, M.; Katsaros, K.M.; Maurer, G.; Huber, K.; Dostal, E.; et al. Monocyte subset distribution in patients with stable atherosclerosis and elevated levels of lipoprotein(a). J. Clin. Lipidol. 2015, 9, 533–541. [Google Scholar] [CrossRef]
- Kauerova, S.; Bartuskova, H.; Muffova, B.; Janousek, L.; Fronek, J.; Petras, M.; Poledne, R.; Kralova Lesna, I. Statins Directly Influence the Polarization of Adipose Tissue Macrophages: A Role in Chronic Inflammation. Biomedicines 2021, 9, 211. [Google Scholar] [CrossRef]
- Eberhardt, N.; Giannarelli, C. Statins boost the macrophage eat-me signal to keep atherosclerosis at bay. Nat. Cardiovasc. Res. 2022, 1, 196–197. [Google Scholar] [CrossRef]
- Henriksbo, B.D.; Tamrakar, A.K.; Phulka, J.S.; Barra, N.G.; Schertzer, J.D. Statins activate the NLRP3 inflammasome and impair insulin signaling via p38 and mTOR. Am. J. Physiol.-Endocrinol. Metab. 2020, 319, E110–E116. [Google Scholar] [CrossRef]
- Sheridan, A.; Wheeler-Jones, C.P.D.; Gage, M.C. The Immunomodulatory Effects of Statins on Macrophages. Immuno 2022, 2, 317–343. [Google Scholar] [CrossRef]
- Manni, G.; Gargaro, M.; Turco, A.; Scalisi, G.; Matino, D.; Pirro, M.; Fallarino, F. Statins regulates inflammatory macrophage phenotype through the activation of AhR. J. Immunol. 2018, 200, 167.19. [Google Scholar] [CrossRef]
- Conway, D.E.; Sakurai, Y.; Weiss, D.; Vega, J.D.; Taylor, W.R.; Jo, H.; Eskin, S.G.; Marcus, C.B.; McIntire, L.V. Expression of CYP1A1 and CYP1B1 in human endothelial cells: Regulation by fluid shear stress. Cardiovasc. Res. 2009, 81, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Iwata, A.; Shirai, R.; Ishii, H.; Kushima, H.; Otani, S.; Hashinaga, K.; Umeki, K.; Kishi, K.; Tokimatsu, I.; Hiramatsu, K.; et al. Inhibitory effect of statins on inflammatory cytokine production from human bronchial epithelial cells. Clin. Exp. Immunol. 2012, 168, 234–240. [Google Scholar] [CrossRef]
- Fu, H.; Alabdullah, M.; Großmann, J.; Spieler, F.; Abdosh, R.; Lutz, V.; Kalies, K.; Knöpp, K.; Rieckmann, M.; Koch, S.; et al. The differential statin effect on cytokine production of monocytes or macrophages is mediated by differential geranylgeranylation-dependent Rac1 activation. Cell Death Dis. 2019, 10, 880. [Google Scholar] [CrossRef]
Gene | Gene ID | Forward Sequence (5′-3′) | Reverse Primer (5′-3′) | Product Length (bp) | Tm (°C) |
---|---|---|---|---|---|
Cyp1a1 | NM_000410.4 | GATTGAGCACTGTCAGGAGAAGC | ATGAGGCTCCAGGAGATAGCAG | 138 | 61 |
Cyp1b1 | NM_000100.3 | GCCACTATCACTGACATCTTCGG | CACGACCTGATCCAATTCTGCC | 129 | 61 |
ARNT | NM_000739.3 | GGAATGCCTACTCCAGTCTTGC | CTTTGCCACTGCGACCAGACTT | 109 | 61 |
IDO-1 | NM_002164.4 | GCCTGATCTCATAGAGTCTGGC | TGCATCCCAGAACTAGACGTGC | 119 | 61 |
18srRNA | NR_003278.3 | ACCCGTTGAACCCCATTCGTGA | GCCTCACTAAACCATCCAATCGG | 159 | 61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmati, M.; Zare Ebrahimabad, M.; Langari, A.; Najafi, A.; Taziki, S.; Norouzi, A.; Teimoorian, M.; Khorasani, M.; Mohammadi, S. Rosuvastatin Intervention in Patients with Chronic Hepatitis B (CHB) Expands CD14+ CD16− Classical Monocytes via Aryl Hydrocarbon Receptor (AHR). Immuno 2024, 4, 159-171. https://doi.org/10.3390/immuno4020011
Rahmati M, Zare Ebrahimabad M, Langari A, Najafi A, Taziki S, Norouzi A, Teimoorian M, Khorasani M, Mohammadi S. Rosuvastatin Intervention in Patients with Chronic Hepatitis B (CHB) Expands CD14+ CD16− Classical Monocytes via Aryl Hydrocarbon Receptor (AHR). Immuno. 2024; 4(2):159-171. https://doi.org/10.3390/immuno4020011
Chicago/Turabian StyleRahmati, Mina, Mojtaba Zare Ebrahimabad, Alale Langari, Ali Najafi, Shohreh Taziki, Alireza Norouzi, Mehrdad Teimoorian, Milad Khorasani, and Saeed Mohammadi. 2024. "Rosuvastatin Intervention in Patients with Chronic Hepatitis B (CHB) Expands CD14+ CD16− Classical Monocytes via Aryl Hydrocarbon Receptor (AHR)" Immuno 4, no. 2: 159-171. https://doi.org/10.3390/immuno4020011
APA StyleRahmati, M., Zare Ebrahimabad, M., Langari, A., Najafi, A., Taziki, S., Norouzi, A., Teimoorian, M., Khorasani, M., & Mohammadi, S. (2024). Rosuvastatin Intervention in Patients with Chronic Hepatitis B (CHB) Expands CD14+ CD16− Classical Monocytes via Aryl Hydrocarbon Receptor (AHR). Immuno, 4(2), 159-171. https://doi.org/10.3390/immuno4020011