Sentiment Analysis of Berlin Tourists’ Food Quality Perception Through Artificial Intelligence
Abstract
:1. Introduction
2. Literature Review
2.1. The Influence of Social Media
- Sensory experience: sensory appeal, including taste, aroma, and presentation, directly affects tourists’ satisfaction. Ensuring high sensory quality can enhance positive perceptions [30].
- Service quality: the quality of service, including staff friendliness, efficiency, and ambiance, plays a vital role in shaping dining experiences. High service quality can mitigate potential negative perceptions related to cultural misunderstandings [31].
- Authenticity and innovation: balancing authenticity with innovative culinary experiences can cater to diverse tourist preferences. Highlighting traditional dishes while incorporating modern elements can attract a broader audience [29].
- Feedback mechanisms: implementing effective feedback mechanisms like online reviews and direct feedback allows businesses to continuously improve and adapt to changing tourist expectations [31].
2.2. Artificial Intelligence in Analyzing Tourist Feedback
2.3. Comparative Approaches to Sentiment Analysis
2.3.1. Lexicon-Based Methods
2.3.2. Machine Learning Methods
2.3.3. Hybrid Methods
3. Materials and Methods
4. Results
4.1. Comparison of Sentiment Across Food Categories
4.2. Comparing Restaurant Ratings and Sentiment Scores
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
# Import the pandas library for data manipulation import pandas as pd # Import the VADER sentiment analyzer from the NLTK library from nltk.sentiment.vader import SentimentIntensityAnalyzer # Load the CSV file containing the final data file_path = ‘path/to/your/final.csv’ # Read the CSV file into a DataFrame df = pd.read_csv(file_path) # Initialize VADER sentiment analyzer sia = SentimentIntensityAnalyzer() # Create an instance of SentimentIntensityAnalyzer # Define a function to analyze sentiments def analyze_sentiment(text): score = sia.polarity_scores(text)[‘compound’] # Calculate the compound sentiment score if score > 0.05: # If the score is greater than 0.05, classify as positive return ‘positive’ elif score < −0.05: # If the score is less than −0.05, classify as negative return ‘negative’ else: # Otherwise, classify as neutral return ‘neutral’ # Apply sentiment analysis on the ‘review_text’ column df[‘sentiment’] = df[‘review_text’].apply(analyze_sentiment) # Apply the function to each review text # Save the results to a new CSV file result_file_path = ‘path/to/save/sentiment_results.csv’ # Specify the path to save the results df.to_csv(result_file_path, index = False) # Save the DataFrame to a CSV file # Import matplotlib for plotting import matplotlib.pyplot as plt # Import seaborn for advanced plotting import seaborn as sns # Plot the sentiment distribution sns.countplot(x = ‘sentiment’, data = df) # Create a count plot of sentiments plt.title(‘Sentiment Distribution’) # Set the title of the plot plt.xlabel(‘Sentiment’) # Set the label for the x-axis plt.ylabel(‘Count’) # Set the label for the y-axis plt.show() # Display the plot # Display sentiment trends over time if ‘review_date’ column is available if ‘review_date’ in df.columns: # Check if the ‘review_date’ column exists in the DataFrame df[‘review_date’] = pd.to_datetime(df[‘review_date’]) # Convert ‘review_date’ column to datetime format df.set_index(‘review_date’, inplace = True) # Set ‘review_date’ as the index of the DataFrame df.resample(‘M’).sentiment.value_counts().unstack().plot() # Resample data by month and plot sentiment trends plt.title(‘Sentiment Trends Over Time’) # Set the title of the plot plt.xlabel(‘Date’) # Set the label for the x-axis plt.ylabel(‘Count’) # Set the label for the y-axis plt.show() # Display the plot |
Appendix B
# Import the pandas library for data manipulation import pandas as pd # Import the VADER sentiment analyzer from the NLTK library from nltk.sentiment.vader import SentimentIntensityAnalyzer # Load the CSV file containing the final data file_path = ‘path/to/your/final.csv’ # Read the CSV file into a DataFrame df = pd.read_csv(file_path) # Initialize VADER sentiment analyzer sia = SentimentIntensityAnalyzer() # Create an instance of SentimentIntensityAnalyzer # Define a function to analyze sentiments def analyze_sentiment(text): score = sia.polarity_scores(text)[‘compound’] # Calculate the compound sentiment score if score > 0.05: # If the score is greater than 0.05, classify as positive return ‘positive’ elif score < −0.05: # If the score is less than −0.05, classify as negative return ‘negative’ else: # Otherwise, classify as neutral return ‘neutral’ # Apply sentiment analysis on the ‘review_text’ column df[‘sentiment’] = df[‘review_text’].apply(analyze_sentiment) # Apply the function to each review text df[‘compound_score’] = df[‘review_text’].apply(lambda x: sia.polarity_scores(x)[‘compound’]) # Calculate and add the compound score for each review # Save the results to a new CSV file result_file_path = ‘path/to/save/sentiment_results.csv’ # Specify the path to save the results df.to_csv(result_file_path, index = False) # Save the DataFrame to a CSV file without the index |
Appendix C
# Import the pandas library, which is a powerful tool for data manipulation and analysis import pandas as pd # Load the dataset with the correct path file_path = ‘Sentiment_Results_Filtered.csv’ # The path to the CSV file containing the data; replace with the actual file path df = pd.read_csv(file_path) # Reads the CSV file into a DataFrame, which is a table-like data structure in pandas # Define categories and their associated keywords categories = { ‘Berlin Restaurants’: ’restaurants’ # General category for all restaurants in Berlin ‘Berlin Kebap’: ‘kebap|kebab’, # Specific category for kebap restaurants; searches for keywords’ kebap’ or ‘kebab’ ‘Berlin Pizza’: ‘pizza’, # Specific category for pizza restaurants; searches for keyword ‘pizza’ ‘Berlin Burger’: ‘burger’ # Specific category for burger restaurants; searches for keyword ‘burger’ } # Initialize an empty dictionary to store results results = {} # This dictionary will hold the mean sentiment score for each category # Calculate sentiment scores for each category for category, keywords in categories.items(): # Loop through each category and its associated keywords if keywords: # If keywords are provided, filter the DataFrame based on these keywords filtered_df = df[df[‘review_text’].str.contains(keywords, case = False, na = False)] # Filters the ‘review_text’ column for entries containing the specified keywords (case insensitive) else: # If no keywords are specified, use the entire DataFrame for general category filtered_df = df # Calculate the mean compound score for the filtered data mean_score = filtered_df[‘Sentiment_Score’].mean() # Computes the average sentiment score for the filtered data results[category] = mean_score # Stores the mean score in the results dictionary with the category as the key # Convert results to a DataFrame for better visualization results_df = pd.DataFrame(list(results.items()), columns = [‘Category’, ‘Mean Sentiment Score’]) # Converts the results dictionary into a DataFrame for easy viewing and analysis, with ‘Category’ and ‘Mean Sentiment Score’ as columns # Save the results results_df.to_csv(‘Sentiment_Scores_By_Category.csv’, index = False) # Saves the DataFrame to a new CSV file named ‘Sentiment_Scores_By_Category.csv’ without the index column # Display the results print(results_df) # Prints the results DataFrame to the console |
Appendix D
# Import the pandas library, which is a powerful tool for data manipulation and analysis import pandas as pd # Import the pearsonr function from scipy.stats for calculating the Pearson correlation coefficient and p-value from scipy.stats import pearsonr # Import numpy, a fundamental package for array computing with Python import numpy as np # Load the sentiment analysis dataset sentiment_df = pd.read_csv(‘Sentiment_Results_Filtered.csv’) # Reads the sentiment scores from the CSV file into a DataFrame # Load the restaurant ratings dataset ratings_df = pd.read_csv(‘rate_rest.csv’) # Reads the restaurant ratings from the CSV file into a DataFrame # Merge the two datasets on the common column ‘restaurant_name’ merged_df = pd.merge(sentiment_df, ratings_df, on = ‘restaurant_name’) # Combines the sentiment scores and ratings into a single DataFrame using the restaurant names as the key # Check for missing values in the ‘rating’ and ‘Sentiment_Score’ columns print(“Missing values in ‘rating’:”, merged_df[‘rating’].isnull().sum()) # Counts and prints the number of missing values in the ‘rating’ column print(“Missing values in ‘Sentiment_Score’:”, merged_df[‘Sentiment_Score’].isnull().sum()) # Counts and prints the number of missing values in the ‘Sentiment_Score’ column # Check for infinite values in the ‘rating’ and ‘Sentiment_Score’ columns print(“Infinite values in ‘rating’: “, np.isinf(merged_df[‘rating’]).sum()) # Counts and prints the number of infinite values in the ‘rating’ column print(“Infinite values in ‘Sentiment_Score’: “, np.isinf(merged_df[‘Sentiment_Score’]).sum()) # Counts and prints the number of infinite values in the ‘Sentiment_Score’ column # Replace infinite values with NaN and remove rows with NaN values in ‘rating’ or ‘Sentiment_Score’ cleaned_df = merged_df.replace([np.inf, -np.inf], np.nan).dropna(subset = [‘rating’, ‘Sentiment_Score’]) # Cleans the data by replacing any infinite values with NaN and dropping rows where ‘rating’ or ‘Sentiment_Score’ is missing # Verify that there are no more missing or infinite values print(“Cleaned data—missing values in ‘rating’: “, cleaned_df[‘rating’].isnull().sum()) # Rechecks and prints the number of missing values in the cleaned ‘rating’ column print(“Cleaned data—missing values in ‘Sentiment_Score’: “, cleaned_df[‘Sentiment_Score’].isnull().sum()) # Rechecks and prints the number of missing values in the cleaned ‘Sentiment_Score’ column # Calculate the Pearson correlation coefficient and p-value between restaurant ratings and sentiment scores corr_coefficient, p_value = pearsonr(cleaned_df[‘rating’], cleaned_df[‘Sentiment_Score’]) # Uses the pearsonr function to compute the correlation and p-value, indicating the strength and significance of the relationship between the two variables # Display the Pearson correlation coefficient and p-value print(f’Pearson correlation coefficient: {corr_coefficient:.2f}’) # Prints the calculated correlation coefficient with two decimal places print(f’p-value: {p_value:.5f}’) # Prints the calculated p-value with five decimal places |
References
- Bilanz 2023: Berlin-Tourismus Mit Stabilem Wachstum. Available online: https://www.berlin.de/sen/web/presse/pressemitteilungen/2024/pressemitteilung.1420282.php (accessed on 6 August 2024).
- Stroebele, N.; Dietze, P.; Tinnemann, P.; Willich, S.N. Assessing the Variety and Pricing of Selected Foods in Socioeconomically Disparate Districts of Berlin, Germany. J. Public Health 2011, 19, 23–28. [Google Scholar] [CrossRef]
- Pine, B.J.; Gilmore, J.H. The Experience Economy: Work Is Theatre & Every Business a Stage; Harvard Business Press: Brighton, MA, USA, 1999; ISBN 978-0-87584-819-8. [Google Scholar]
- Kothari, S. Online Reputation Management Strategies in Hospitality Industry: A Cross-Sectional Study. Psychol. Educ. 2023, 55, 725–733. [Google Scholar] [CrossRef]
- Oliinyk, O. Digitalization of Business Processes in the Hospitality Industry. Econ. Aff. 2022, 67, 725–733. [Google Scholar] [CrossRef]
- Shostack, G.L. Designing Services That Deliver; Harvard Business Review: Boston, MA, USA, 1984; pp. 133–139. [Google Scholar]
- Godovykh, M.; Tasci, A.D.A. Customer Experience in Tourism: A Review of Definitions, Components, and Measurements. Tour. Manag. Perspect. 2020, 35, 100694. [Google Scholar] [CrossRef]
- Kim, Y. A Study on the Customer Experience Enhancement Business Model Appling Customer Journey Map Analysis in the Tourism Industry. J. Tour. Leis. Res. 2021, 33, 131–145. [Google Scholar] [CrossRef]
- Taheri, B.; Prayag, G.; Muskat, B. Introduction to the Special Issue: Consumer Experience Management and Customer Journeys in Tourism, Hospitality and Events. Tour. Manag. Perspect. 2021, 40, 100877. [Google Scholar] [CrossRef]
- Nikolskaya, E.Y.; Lepeshkin, V.A.; Blinova, E.A.; Kulgachev, I.P.; Ilkevich, S.V. Improvement of Digital Technology in the Tourism Sector. J. Environ. Manag. Tour. 2019, 10, 1197–1201. [Google Scholar] [CrossRef]
- Kirillova, S.A. Digital Transformation of Tourism: Trends, Challenges, Solutions. News Ufa Res. Cent. Ras 2021, 4, 90–101. [Google Scholar] [CrossRef]
- Manzano, A.B.B.; Aranda, L.-A.C.; Ruibal, A.R.; Hernández, S.H. Minube: Caso de éxito de una comunidad virtual de viajeros en España. Rotur Revista Ocio Turismo 2019, 13, 12–27. [Google Scholar] [CrossRef]
- Dyankov, T. Marketing Opportunities for Managing Customer Experience with the Tourist Brand. In Anniversary Scientific Conference with International Participation TOURISM AND CONNECTIVITY 2020; University Publishing House “Science and Economics”; University of Economics: Prague, Czechia, 2020; pp. 349–355. [Google Scholar]
- Kandampully, J.; Zhang, T.; Bilgihan, A. Customer Loyalty: A Review and Future Directions with a Special Focus on the Hospitality Industry. Int. J. Contemp. Hosp. Manag. 2015, 27, 379–414. [Google Scholar] [CrossRef]
- Su, C.-S.; Sun, L.-H. Taiwan’s Hotel Rating System: A Service Quality Perspective. Cornell Hotel Restaur. Adm. Q. 2007, 48, 392–401. [Google Scholar] [CrossRef]
- Parasuraman, A.P.; Zeithaml, V.; Berry, L. SERVQUAL A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Clemes, M.; Wu, H.C.J.; Hu, B.; Gan, C. An Empirical Study of Behavioral Intentions in the Taiwan Hotel Industry. Innov. Mark. 2009, 5, 30–50. [Google Scholar]
- Anderson, E.; Fornell, C.; Mazvancheryl, S. Customer Satisfaction and Shareholder Value. J. Mark. 2004, 68, 172–185. [Google Scholar] [CrossRef]
- Ye, Q.; Law, R.; Gu, B. The Impact of Online User Reviews on Hotel Room Sales. Int. J. Hosp. Manag. 2009, 28, 180–182. [Google Scholar] [CrossRef]
- Levy, S.E.; Duan, W.; Boo, S. An Analysis of One-Star Online Reviews and Responses in the Washington, D.C., Lodging Market. Cornell Hosp. Q. 2013, 54, 49–63. [Google Scholar] [CrossRef]
- Sparks, B.A.; Browning, V. The Impact of Online Reviews on Hotel Booking Intentions and Perception of Trust. Tour. Manag. 2011, 32, 1310–1323. [Google Scholar] [CrossRef]
- Xiang, Z.; Gretzel, U. Role of Social Media in Online Travel Information Search. Tour. Manag. 2010, 31, 179–188. [Google Scholar] [CrossRef]
- Sigala, M. Social Networks and Customer Involvement in New Service Development (NSD). Int. J. Contemp. Hosp. Manag. 2012, 24, 966–990. [Google Scholar] [CrossRef]
- Kim, J.; Fesenmaier, D.R.; Johnson, S.L. The Effect of Feedback within Social Media in Tourism Experiences. In Proceedings of the Design, User Experience, and Usability. Web, Mobile, and Product Design, Las Vegas, NV, USA, 21–26 July 2013; Marcus, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 212–220. [Google Scholar]
- Erol, G.; Örgün, E.; Keskin, E. Restaurant Image on Social Media: The Case of Cappadocia. jotags 2019, 7, 3290–3302. [Google Scholar] [CrossRef]
- Dolan, R.; Seo, Y.; Kemper, J. Complaining Practices on Social Media in Tourism: A Value Co-Creation and Co-Destruction Perspective. Tour. Manag. 2019, 73, 35–45. [Google Scholar] [CrossRef]
- Labibe, A.E.; Morsy, M.A.E.-W.; Zaki, M.M. Food Tourism in the Egyptian Hotels: Drivers, Perceived Benefits, Barriers, and Adoption Intention. Int. J. Tour. Hosp. Manag. 2023, 6, 72–100. [Google Scholar] [CrossRef]
- Therkelsen, A. Making Sense of Self and Other through Holiday Food: Nordic Conference on Consumer Research. Tour. Stud. 2012, 12, 49–69. [Google Scholar]
- Bessiere, J.; Tibere, L. Traditional Food and Tourism: French Tourist Experience and Food Heritage in Rural Spaces. J. Sci. Food Agric. 2013, 93, 3420–3425. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choe, J.Y.; Kim, P.B. Effects of Local Food Attributes on Tourist Dining Satisfaction and Future: The Moderating Role of Food Culture Difference. J. China Tour. Res. 2022, 18, 121–143. [Google Scholar] [CrossRef]
- Liu, S.; Li, S.; Chen, Y.; Zheng, T. Examining Relationships among Food’s Perceived Value, Well-Being, and Tourists’ Loyalty. J. Vacat. Mark. 2023, 29, 161–174. [Google Scholar] [CrossRef]
- Huong, T.T.L.; Kieu, N.T.D. Street Food Experience and Destination Image: A Study on Tourist Perceptions in Da Lat. J. Int. Econ. Manag. 2023, 23, 68–88. [Google Scholar] [CrossRef]
- Muskat, B.; Prayag, G.; Hosany, S.; Li, G.; Vu, Q.; Wagner, S. The Interplay of Sensory and Non-Sensory Factors in Food Tourism Experiences. Tour. Rev. 2023, 79, 658–670. [Google Scholar] [CrossRef]
- Kounta, C.A.K.A.; Arnaud, L.; Kamsu-Foguem, B.; Tangara, F. Review of AI-Based Methods for Chatter Detection in Machining Based on Bibliometric Analysis. Int. J. Adv. Manuf. Technol. 2022, 122, 2161–2186. [Google Scholar] [CrossRef]
- Tunca, B.; Saraçlı, S. Artificial Neural Network Approach on Type II Regression Analysis. Alphanumeric 2021, 9, 247–258. [Google Scholar] [CrossRef]
- Purificato, E.; Lorenzo, F.; Fallucchi, F.; De Luca, E.W. The Use of Responsible Artificial Intelligence Techniques in the Context of Loan Approval Processes. Int. J. Hum.–Comput. Interact. 2023, 39, 1543–1562. [Google Scholar] [CrossRef]
- Kabiri, P. A Comparison Between the Proportional Keen Approximator and the Neural Networks Learning Methods. In Proceedings of the ICEIS 2004, Proceedings of the 6th International Conference on Enterprise Information Systems, Porto, Portugal, 14–17 April 2004; pp. 159–164. [Google Scholar]
- Ekizler, H.; Öksüz, M.; Durmuş, B.; Dilistan Shipman, Z. Antecedents of Tourist Food Consumption: Food Choice Motives of Foreign Tourists in Turkey. Anatolia 2023, 34, 494–508. [Google Scholar] [CrossRef]
- Anis, S.; Saad, S.; Aref, M. A Survey on Sentiment Analysis in Tourism. Int. J. Intell. Comput. Inf. Sci. 2020, 20, 1–15. [Google Scholar] [CrossRef]
- Taboada, M.; Brooke, J.; Tofiloski, M.; Voll, K.; Stede, M. Lexicon-Based Methods for Sentiment Analysis. Comput. Linguist. 2011, 37, 267–307. [Google Scholar] [CrossRef]
- García, A.; Gaines, S.; Linaza, M. A Lexicon Based Sentiment Analysis Retrieval System for Tourism Domain. Expert Syst. Appl. Int. J. 2012, 39, 9166–9180. [Google Scholar]
- Öhman, E. The Validity of Lexicon-Based Sentiment Analysis in Interdisciplinary Research. In Proceedings of the Workshop on Natural Language Processing for Digital Humanities; Hämäläinen, M., Alnajjar, K., Partanen, N., Rueter, J., Eds.; NLP Association of India (NLPAI): Gurugram, India, December 2021; pp. 7–12. [Google Scholar]
- Fehle, J.; Schmidt, T.; Wolff, C. Lexicon-Based Sentiment Analysis in German: Systematic Evaluation of Resources and Preprocessing Techniques. In Proceedings of the 17th Conference on Natural Language Processing (KONVENS 2021), Dusseldorf, Germany, 6–9 September 2021; Evang, K., Kallmeyer, L., Osswald, R., Waszczuk, J., Zesch, T., Eds.; KONVENS 2021 Organizers: Düsseldorf, Germany, 2021; pp. 86–103. [Google Scholar]
- Mustofa, R.L.; Prasetiyo, B. Sentiment Analysis Using Lexicon-Based Method with Naive Bayes Classifier Algorithm on #newnormal Hashtag in Twitter. J. Phys. Conf. Ser. 2021, 1918, 042155. [Google Scholar] [CrossRef]
- Paolanti, M.; Mancini, A.; Frontoni, E.; Felicetti, A.; Marinelli, L.; Marcheggiani, E.; Pierdicca, R. Tourism Destination Management Using Sentiment Analysis and Geo-Location Information: A Deep Learning Approach. Inf. Technol. Tour. 2021, 23, 241–264. [Google Scholar] [CrossRef]
- Lubihana, E.; Y., B. Design of a Tourism Recommendation System Based on Sentiment Analysis with Lexicon LSTM. In Proceedings of the 2022 International Symposium on Electronics and Smart Devices (ISESD), Bandung, Indonesia, 8–9 November 2022; pp. 1–6. [Google Scholar]
- Yang, P.; Chen, Y. A Survey on Sentiment Analysis by Using Machine Learning Methods. In Proceedings of the 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 December 2017; pp. 117–121. [Google Scholar]
- Haberzettl, M.; Markscheffel, B. A Literature Analysis for the Identification of Machine Learning and Feature Extraction Methods for Sentiment Analysis. In Proceedings of the 2018 Thirteenth International Conference on Digital Information Management (ICDIM), Berlin, Germany, 24–26 September 2018; pp. 6–11. [Google Scholar]
- Andersson, E.; Dryden, C.; Variawa, C. Methods of Applying Machine Learning to Student Feedback Through Clustering and Sentiment Analysis. In Proceedings of the Canadian Engineering Education Association (CEEA), Vancouver, BC, Canada, 3–6 June 2018. [Google Scholar] [CrossRef]
- Basarslan, M.S.; Kayaalp, F. Sentiment Analysis with Machine Learning Methods on Social Media. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2020, 9, 5–15. [Google Scholar] [CrossRef]
- Aksu, M.Ç.; Karaman, E. Analysis of Turkish Sentiment Expressions About Touristic Sites Using Machine Learning. J. Intell. Syst. Theory Appl. 2021, 4, 103–112. [Google Scholar] [CrossRef]
- AlBadani, B.; Shi, R.; Dong, J. A Novel Machine Learning Approach for Sentiment Analysis on Twitter Incorporating the Universal Language Model Fine-Tuning and SVM. Appl. Syst. Innov. 2022, 5, 13. [Google Scholar] [CrossRef]
- Leelawat, N.; Jariyapongpaiboon, S.; Promjun, A.; Boonyarak, S.; Saengtabtim, K.; Laosunthara, A.; Yudha, A.K.; Tang, J. Twitter Data Sentiment Analysis of Tourism in Thailand during the COVID-19 Pandemic Using Machine Learning. Heliyon 2022, 8, e10894. [Google Scholar] [CrossRef] [PubMed]
- Hadwan, M.; Al-Sarem, M.; Saeed, F.; Al-Hagery, M.A. An Improved Sentiment Classification Approach for Measuring User Satisfaction toward Governmental Services’ Mobile Apps Using Machine Learning Methods with Feature Engineering and SMOTE Technique. Appl. Sci. 2022, 12, 5547. [Google Scholar] [CrossRef]
- Prastyo, P.H.; Ardiyanto, I.; Hidayat, R. A Review of Feature Selection Techniques in Sentiment Analysis Using Filter, Wrapper, or Hybrid Methods. In Proceedings of the 2020 6th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 7–8 September 2020; pp. 1–6. [Google Scholar]
- Utama, I.P.A.M.; Prasetyowati, S.S.; Sibaroni, Y. Multi-Aspect Sentiment Analysis Hotel Review Using RF, SVM, and Naïve Bayes Based Hybrid Classifier. J. Media Inform. Budidarma 2021, 5, 630–639. [Google Scholar] [CrossRef]
- Mohamad Sham, N.; Mohamed, A. Climate Change Sentiment Analysis Using Lexicon, Machine Learning and Hybrid Approaches. Sustainability 2022, 14, 4723. [Google Scholar] [CrossRef]
- Talaat, A.S. Sentiment Analysis Classification System Using Hybrid BERT Models. J. Big Data 2023, 10, 110. [Google Scholar] [CrossRef]
- Vanam, H. Jeberson Retna Raj Novel Method for Sentiment Analysis in Social Media Data Using Hybrid Deep Learning Model. J. Adv. Res. Appl. Sci. Eng. Technol. 2023, 32, 272–289. [Google Scholar] [CrossRef]
- Agrawal, M.; Moparthi, N.R. A Hybrid Multi-Source Data Fusion for Word, Sentence, Aspect, and Document-Level Sentiment Analysis on Real-Time Databases. J. Intell. Fuzzy Syst. 2023; 1–11, pre-press. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, S.; Yu, Y. A TBGAV-Based Image-Text Multimodal Sentiment Analysis Method for Tourism Reviews. Int. J. Inf. Technol. Web Eng. (IJITWE) 2023, 18, 1–17. [Google Scholar] [CrossRef]
- Razali, M.N.; Manaf, S.A.; Hanapi, R.B.; Salji, M.R.; Chiat, L.W.; Nisar, K. Enhancing Minority Sentiment Classification in Gastronomy Tourism: A Hybrid Sentiment Analysis Framework With Data Augmentation, Feature Engineering and Business Intelligence. IEEE Access 2024, 12, 49387–49407. [Google Scholar] [CrossRef]
Category | Mean Sentiment Score |
---|---|
Restaurants | 0.592996 |
Kebap | 0.612254 |
Pizza | 0.606561 |
Burger | 0.629566 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiezad, O.; Mostofi, H. Sentiment Analysis of Berlin Tourists’ Food Quality Perception Through Artificial Intelligence. Tour. Hosp. 2024, 5, 1396-1417. https://doi.org/10.3390/tourhosp5040078
Shafiezad O, Mostofi H. Sentiment Analysis of Berlin Tourists’ Food Quality Perception Through Artificial Intelligence. Tourism and Hospitality. 2024; 5(4):1396-1417. https://doi.org/10.3390/tourhosp5040078
Chicago/Turabian StyleShafiezad, Omid, and Hamid Mostofi. 2024. "Sentiment Analysis of Berlin Tourists’ Food Quality Perception Through Artificial Intelligence" Tourism and Hospitality 5, no. 4: 1396-1417. https://doi.org/10.3390/tourhosp5040078
APA StyleShafiezad, O., & Mostofi, H. (2024). Sentiment Analysis of Berlin Tourists’ Food Quality Perception Through Artificial Intelligence. Tourism and Hospitality, 5(4), 1396-1417. https://doi.org/10.3390/tourhosp5040078