Simultaneous Removal of Seven Pharmaceutical Compounds from a Water Mixture Using Modified Chitosan Adsorbent Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Adsorbents
2.2.1. Acrylamido-Modified Chitosan Derivative (CS-AMI)
2.2.2. Poly(ethylene imine)-Modified Chitosan Derivative (CS-PEI)
2.3. Model Drug Pollutants
2.4. Physicochemical Characterisation
2.4.1. SEM
2.4.2. FTIR
2.4.3. XRD
2.4.4. Swelling Tests
2.5. Batch Adsorption Experiments
2.5.1. pH
2.5.2. Kinetics
2.5.3. Effect of Mass
2.6. Analysis
3. Results
3.1. Characterisation Techniques
3.2. Effect of pH—Adsorption Mechanism
3.3. Adsorption Kinetics
3.4. Effect of Mass
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abd El-Monaem, E.M.; Eltaweil, A.S.; Elshishini, H.M.; Hosny, M.; Abou Alsoaud, M.M.; Attia, N.F.; El-Subruiti, G.M.; Omer, A.M. Sustainable Adsorptive Removal of Antibiotic Residues by Chitosan Composites: An Insight into Current Developments and Future Recommendations. Arab. J. Chem. 2022, 15, 103743. [Google Scholar] [CrossRef] [PubMed]
- Gkika, D.A.; Mitropoulos, A.C.; Kokkinos, P.; Lambropoulou, D.A.; Kalavrouziotis, I.K.; Bikiaris, D.N.; Kyzas, G.Z. Modified Chitosan Adsorbents in Pharmaceutical Simulated Wastewaters: A Review of the Last Updates. Carbohydr. Polym. Technol. Appl. 2023, 5, 100313. [Google Scholar] [CrossRef]
- Bhuyan, A.; Ahmaruzzaman, M. Recent Advances in New Generation Nanocomposite Materials for Adsorption of Pharmaceuticals from Aqueous Environment. Environ. Sci. Pollut. Res. 2023, 30, 39377–39417. [Google Scholar] [CrossRef] [PubMed]
- McDougall, L.; Thomson, L.; Brand, S.; Wagstaff, A.; Lawton, L.A.; Petrie, B. Adsorption of a Diverse Range of Pharmaceuticals to Polyethylene Microplastics in Wastewater and Their Desorption in Environmental Matrices. Sci. Total Environ. 2022, 808, 152071. [Google Scholar] [CrossRef] [PubMed]
- Al-Jubouri, S.M.; Al-Jendeel, H.A.; Rashid, S.A.; Al-Batty, S. Antibiotics Adsorption from Contaminated Water by Composites of ZSM-5 Zeolite Nanocrystals Coated Carbon. J. Water Process Eng. 2022, 47, 102745. [Google Scholar] [CrossRef]
- Bai, H.; Zhang, Q.; Zhou, X.; Chen, J.; Chen, Z.; Liu, Z.; Yan, J.; Wang, J. Removal of Fluoroquinolone Antibiotics by Adsorption of Dopamine-Modified Biochar Aerogel. Korean J. Chem. Eng. 2023, 40, 215–222. [Google Scholar] [CrossRef]
- Agustin, M.B.; Mikkonen, K.S.; Kemell, M.; Lahtinen, P.; Lehtonen, M. Systematic Investigation of the Adsorption Potential of Lignin- and Cellulose-Based Nanomaterials towards Pharmaceuticals. Environ. Sci. Nano 2022, 9, 2006–2019. [Google Scholar] [CrossRef]
- Okolie, J.A.; Savage, S.; Ogbaga, C.C.; Gunes, B. Assessing the Potential of Machine Learning Methods to Study the Removal of Pharmaceuticals from Wastewater Using Biochar or Activated Carbon. Total Environ. Res. Themes 2022, 1–2, 100001. [Google Scholar] [CrossRef]
- Ferrah, N.; Merghache, D.; Meftah, S.; Benbellil, S. A New Alternative of a Green Polymeric Matrix Chitosan/Alginate-Polyethyleniminemethylene Phosphonic Acid for Pharmaceutical Residues Adsorption. Environ. Sci. Pollut. Res. 2022, 29, 13675–13687. [Google Scholar] [CrossRef]
- Mashile, P.P.; Nomngongo, P.N. Magnetic Cellulose-Chitosan Nanocomposite for Simultaneous Removal of Emerging Contaminants: Adsorption Kinetics and Equilibrium Studies. Gels 2021, 7, 190. [Google Scholar] [CrossRef]
- Ahmed, M.; Mavukkandy, M.O.; Giwa, A.; Elektorowicz, M.; Katsou, E.; Khelifi, O.; Naddeo, V.; Hasan, S.W. Recent Developments in Hazardous Pollutants Removal from Wastewater and Water Reuse within a Circular Economy. NPJ Clean Water 2022, 5, 12. [Google Scholar] [CrossRef]
- Bhatt, P.; Joshi, S.; Urper Bayram, G.M.; Khati, P.; Simsek, H. Developments and Application of Chitosan-Based Adsorbents for Wastewater Treatments. Environ. Res. 2023, 226, 115530. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Patra, C.; Rajendran, H.K.; Narayanasamy, S. Activated Carbon-Chitosan Based Adsorbent for the Efficient Removal of the Emerging Contaminant Diclofenac: Synthesis, Characterization and Phytotoxicity Studies. Chemosphere 2022, 307, 135806. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Ali, S.W.; Shahadat, M.; Sagadevan, S. Applications of Polyaniline-Impregnated Silica Gel-Based Nanocomposites in Wastewater Treatment as an Efficient Adsorbent of Some Important Organic Dyes. Green Process. Synth. 2022, 11, 617–630. [Google Scholar] [CrossRef]
- Ganthavee, V.; Trzcinski, A.P. Removal of Pharmaceutically Active Compounds from Wastewater Using Adsorption Coupled with Electrochemical Oxidation Technology: A Critical Review. J. Ind. Eng. Chem. 2023, 126, 20–35. [Google Scholar] [CrossRef]
- Nordin, A.H.; Ngadi, N.; Ilyas, R.A.; Abd Latif, N.A.F.; Nordin, M.L.; Mohd Syukri, M.S.; Nabgan, W.; Paiman, S.H. Green Surface Functionalization of Chitosan with Spent Tea Waste Extract for the Development of an Efficient Adsorbent for Aspirin Removal. Environ. Sci. Pollut. Res. 2023, 30, 125048–125065. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Morikawa, K.; Shibata, N.; Zinchenko, A. Adsorptive Removal of Heavy Metal Ions, Organic Dyes, and Pharmaceuticals by DNA–Chitosan Hydrogels. Gels 2021, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, X.; Lou, T. Simultaneous Adsorption for Cationic and Anionic Dyes Using Chitosan/Electrospun Sodium Alginate Nanofiber Composite Sponges. Carbohydr. Polym. 2022, 276, 118728. [Google Scholar] [CrossRef] [PubMed]
- Saheed, I.O.; Oh, W.D.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants—A Review. J. Hazard. Mater. 2021, 408, 124889. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Siafaka, P.I.; Lambropoulou, D.A.; Lazaridis, N.K.; Bikiaris, D.N. Poly(Itaconic Acid)-Grafted Chitosan Adsorbents with Different Cross-Linking for Pb(II) and Cd(II) Uptake. Langmuir 2014, 30, 120–131. [Google Scholar] [CrossRef]
- Alkabli, J. Progress in Preparation of Thiolated, Crosslinked, and Imino-Chitosan Derivatives Targeting Specific Applications. Eur. Polym. J. 2022, 165, 110998. [Google Scholar] [CrossRef]
- Torkaman, S.; Rahmani, H.; Ashori, A.; Najafi, S.H.M. Modification of Chitosan Using Amino Acids for Wound Healing Purposes: A Review. Carbohydr. Polym. 2021, 258, 117675. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, H.; Carmona, R.J.; Gomis-Berenguer, A.; Souissi-Najar, S.; Ouederni, A.; Ania, C.O. Competitive Adsorption of Ibuprofen and Amoxicillin Mixtures from Aqueous Solution on Activated Carbons. J. Colloid. Interface Sci. 2015, 449, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo, M. An Infrared Investigation in Relation with Chitin and Chitosan Characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chatterjee, T.; Woo, S.H. Influence of the Polyethyleneimine Grafting on the Adsorption Capacity of Chitosan Beads for Reactive Black 5 from Aqueous Solutions. Chem. Eng. J. 2011, 166, 168–175. [Google Scholar] [CrossRef]
- Zhou, L.; Jin, J.; Liu, Z.; Liang, X.; Shang, C. Adsorption of Acid Dyes from Aqueous Solutions by the Ethylenediamine-Modified Magnetic Chitosan Nanoparticles. J. Hazard. Mater. 2011, 185, 1045–1052. [Google Scholar] [CrossRef]
- Al-Odaini, N.A.; Zakaria, M.P.; Yaziz, M.I.; Surif, S.; Abdulghani, M. The Occurrence of Human Pharmaceuticals in Wastewater Effluents and Surface Water of Langat River and Its Tributaries, Malaysia. Int. J. Environ. Anal. Chem. 2013, 93, 245–264. [Google Scholar] [CrossRef]
- Gworek, B.; Kijeńska, M.; Zaborowska, M.; Wrzosek, J.; Tokarz, L.; Chmielewski, J. Occurrence of Pharmaceuticals in Aquatic Environment—A Review. DWT 2020, 184, 375–387. [Google Scholar] [CrossRef]
- Queirós, V.; Azeiteiro, U.M.; Soares, A.M.V.M.; Freitas, R. The Antineoplastic Drugs Cyclophosphamide and Cisplatin in the Aquatic Environment—Review. J. Hazard. Mater. 2021, 412, 125028. [Google Scholar] [CrossRef]
- Almeida, Â.; Soares, A.M.V.M.; Esteves, V.I.; Freitas, R. Occurrence of the Antiepileptic Carbamazepine in Water and Bivalves from Marine Environments: A Review. Environ. Toxicol. Pharmacol. 2021, 86, 103661. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Kumar, P.; Vyas, R.K.; Pandit, P.; Dalai, A.K. Occurrence and Removal of Antiviral Drugs in Environment: A Review. Water Air Soil. Pollut. 2013, 224, 1410. [Google Scholar] [CrossRef]
- Amalina, F.; Abd Razak, A.S.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. A Review of Eco-Sustainable Techniques for the Removal of Rhodamine B Dye Utilizing Biomass Residue Adsorbents. Phys. Chem. Earth Parts A/B/C 2022, 128, 103267. [Google Scholar] [CrossRef]
- Ho, Y.S.; Ng, J.C.Y.; McKay, G. Kinetics of Pollutant Sorption by Biosorbents: Review. Sep. Purif. Methods 2000, 29, 189–232. [Google Scholar] [CrossRef]
- Yan, M.; Huang, W.; Li, Z. Chitosan Cross-Linked Graphene Oxide/Lignosulfonate Composite Aerogel for Enhanced Adsorption of Methylene Blue in Water. Int. J. Biol. Macromol. 2019, 136, 927–935. [Google Scholar] [CrossRef]
- Akkaya, R.; Akkaya, B.; Çakıcı, G.T. Chitosan–Poly(Acrylamide-Co-Maleic Acid) Composite Synthesis, Characterization, and Investigation of Protein Adsorption Behavior. Polym. Bull. 2023, 80, 4153–4168. [Google Scholar] [CrossRef]
- Maroulas, K.N.; Trikkaliotis, D.G.; Metaxa, Z.S.; AbdelAll, N.; Alodhayb, A.; Khouqeer, G.A.; Kyzas, G.Z. Super-Hydrophobic Chitosan/Graphene-Based Aerogels for Oil Absorption. J. Mol. Liq. 2023, 390, 123071. [Google Scholar] [CrossRef]
- Desnelli, D.; Eliza, E.; Mara, A.; Rachmat, A. Synthesis of Copolymer of Chitosan with Acrylamide as an Adsorbent for Heavy Metal Waste Treatment. IOP Conf. Ser. Mater. Sci. Eng. 2020, 833, 12064. [Google Scholar] [CrossRef]
- Soradech, S.; Kengkwasingh, P.; Williams, A.C.; Khutoryanskiy, V. V Synthesis and Evaluation of Poly(3-Hydroxypropyl Ethylene-Imine) and Its Blends with Chitosan Forming Novel Elastic Films for Delivery of Haloperidol. Pharmaceutics 2022, 14, 2671. [Google Scholar] [CrossRef]
- Shi, A.; Dai, X.; Jing, Z. Tough and Self-Healing Chitosan/Poly(Acrylamide-Co-Acrylic Acid) Double Network Hydrogels. Polym. Sci. Ser. A 2020, 62, 228–239. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, T.; Liu, J.; Duan, Q.; Song, J.; Yin, Y.; Wang, H. Multi-Component Sorption of Pb2+, Cu2+ and Ni2+ on PEI Modified Chitosan-Based Hybrid Membranes. J. Mol. Liq. 2023, 371, 121091. [Google Scholar] [CrossRef]
- Meng, J.; Cui, J.; Yu, S.; Jiang, H.; Zhong, C.; Hongshun, J. Preparation of Aminated Chitosan Microspheres by One-Pot Method and Their Adsorption Properties for Dye Wastewater. R. Soc. Open Sci. 2019, 6, 182226. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Yang, S.; Liu, X.; Zhu, C.; Qi, F.; Wang, K.; Wang, J.; Wang, Q.; Wang, T.; Ma, P. Adsorption of Antibiotics from Wastewater by Cabbage-Based N, P Co-Doped Mesoporous Carbon Materials. J. Clean. Prod. 2023, 391, 136174. [Google Scholar] [CrossRef]
- Ghiasi, F.; Solaimany Nazar, A.R.; Farhadian, M.; Tangestaninejad, S.; Emami, N. Synthesis of Aqueous Media Stable MIL101-OH/Chitosan for Diphenhydramine and Metronidazole Adsorption. Environ. Sci. Pollut. Res. 2022, 29, 24286–24297. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Chen, C.; Liang, Z.; Zhao, Z.; Cui, F. Selective Adsorption of Antibiotics on Manganese Oxide-Loaded Biochar and Mechanism Based on Quantitative Structure–Property Relationship Model. Bioresour. Technol. 2023, 367, 128262. [Google Scholar] [CrossRef]
- Teo, C.Y.; Jong, J.S.J.; Chan, Y.Q. Carbon-Based Materials as Effective Adsorbents for the Removal of Pharmaceutical Compounds from Aqueous Solution. Adsorpt. Sci. Technol. 2022, 2022, e3079663. [Google Scholar] [CrossRef]
- Malesic-Eleftheriadou, N.; Trikkaliotis, D.G.; Evgenidou, E.; Kyzas, G.Z.; Bikiaris, D.N.; Lambropoulou, D.A. New Biobased Chitosan/Polyvinyl Alcohol/Graphene Oxide Derivatives for the Removal of Pharmaceutical Compounds from Aqueous Mixtures. J. Mol. Liq. 2023, 387, 122673. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Lazaridis, N.K. Reactive and Basic Dyes Removal by Sorption onto Chitosan Derivatives. J. Colloid. Interface Sci. 2009, 331, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Malesic-Eleftheriadou, N.; Evgenidou, E.; Lazaridou, M.; Bikiaris, D.N.; Yang, X.; Kyzas, G.Z.; Lambropoulou, D.A. Simultaneous Removal of Anti-Inflammatory Pharmaceutical Compounds from an Aqueous Mixture with Adsorption onto Chitosan Zwitterionic Derivative. Colloids Surf. A Physicochem. Eng. Asp. 2021, 619, 126498. [Google Scholar] [CrossRef]
- Nezhadali, A.; Koushali, S.E.; Divsar, F. Synthesis of Polypyrrole—Chitosan Magnetic Nanocomposite for the Removal of Carbamazepine from Wastewater: Adsorption Isotherm and Kinetic Study. J. Environ. Chem. Eng. 2021, 9, 105648. [Google Scholar] [CrossRef]
- Suriyanon, N.; Punyapalakul, P.; Ngamcharussrivichai, C. Mechanistic Study of Diclofenac and Carbamazepine Adsorption on Functionalized Silica-Based Porous Materials. Chem. Eng. J. 2013, 214, 208–218. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Y.; Guo, Y.; Liu, C.; Gao, Y.; Xiong, Y.; Jia, Z.; Wang, X.; Zhang, X.; Li, H.; et al. Preparation of High Flux GO/PS-DVB/PAN Membrane by Filtering Layer-by-Layer Assembly Method for Adsorption of Antibiotics from Water. J. Inorg. Organomet. Polym. 2023, 33, 2292–2304. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, H.; Wang, X.; Wang, C.; Wei, X. Effect of PH on Adsorption of Tetracycline Antibiotics on Graphene Oxide. Int. J. Environ. Res. Public Health 2023, 20, 2448. [Google Scholar] [CrossRef] [PubMed]
Name | M.F. | pKa | pKow | Solubility (mg/L) |
---|---|---|---|---|
Carbamazepine | C15H12N2O | 13.9 | 2.45 | 17.7 |
Cyclophosphamide | C7H15Cl2N2O2P | 5.7 | 0.63 | 40,000 |
Adefovir | C20H32N5O8P | 2/6.8 | 1.91 | 19 |
Levofloxacin | C18H20FN3O4 | 6.24 | −0.39/2.1 | 25 |
Metronidazole | C6H9N3O3 | 2.5 | −0.02 | 9500 |
Glibenclamide | C23H28ClN3O5S | 5.3 | 4.7 | 4 |
Trimethoprim | C14H18N4O3 | 6.6/7.2 | 1.33/0.91 | 400 |
PFO | ||
Pharmaceutical | k1 (min−1) | R2 (-) |
carbamazepine | 0.330 | 0.950 |
cyclophosphamide | 0.32 | 0.984 |
adefovir | 0.284 | 0.986 |
metronidazole | 0.195 | 0.900 |
levofloxacin | 0.150 | 0.977 |
trimethoprim | 0.357 | 0.995 |
glibenclamide | 0.426 | 0.997 |
PSO | ||
k2 (μg−1min−1) | R2 (-) | |
carbamazepine | 0.010 | 0.983 |
cyclophosphamide | 0.010 | 0.997 |
adefovir | 0.009 | 0.998 |
metronidazole | 0.005 | 0.974 |
levofloxacin | 0.002 | 0.996 |
trimethoprim | 0.012 | 0.999 |
glibenclamide | 0.012 | 0.999 |
PFO | ||
Pharmaceutical | k1 (min−1) | R2 (-) |
carbamazepine | 0.096 | 0.986 |
cyclophosphamide | 0.175 | 0.895 |
adefovir | 0.075 | 0.959 |
metronidazole | 0.096 | 0.950 |
levofloxacin | 0.162 | 0.962 |
trimethoprim | 0.062 | 0.980 |
glibenclamide | 0.062 | 0.995 |
PSO | ||
k2 (μg−1min−1) | R2 (-) | |
carbamazepine | 0.009 | 0.949 |
cyclophosphamide | 0.010 | 0.984 |
adefovir | 0.002 | 0.988 |
metronidazole | 0.004 | 0.994 |
levofloxacin | 0.004 | 0.993 |
trimethoprim | 0.001 | 0.989 |
glibenclamide | 0.001 | 0.986 |
PFO | ||
Pharmaceutical | k1 (min−1) | R2 (-) |
carbamazepine | 0.205 | 0.981 |
cyclophosphamide | 0.288 | 0.991 |
adefovir | 0.515 | 0.996 |
metronidazole | 0.121 | 0.988 |
levofloxacin | 0.166 | 0.985 |
trimethoprim | 0.293 | 0.972 |
glibenclamide | 0.518 | 0.999 |
PSO | ||
k2 (μg−1min−1) | R2 (-) | |
carbamazepine | 0.007 | 0.996 |
cyclophosphamide | 0.008 | 0.997 |
adefovir | 0.016 | 0.998 |
metronidazole | 0.003 | 0.993 |
levofloxacin | 0.003 | 0.997 |
trimethoprim | 0.017 | 0.992 |
glibenclamide | 0.022 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papageorgiou, M.; Maroulas, K.N.; Evgenidou, E.; Bikiaris, D.N.; Kyzas, G.Z.; Lambropoulou, D.A. Simultaneous Removal of Seven Pharmaceutical Compounds from a Water Mixture Using Modified Chitosan Adsorbent Materials. Macromol 2024, 4, 304-319. https://doi.org/10.3390/macromol4020018
Papageorgiou M, Maroulas KN, Evgenidou E, Bikiaris DN, Kyzas GZ, Lambropoulou DA. Simultaneous Removal of Seven Pharmaceutical Compounds from a Water Mixture Using Modified Chitosan Adsorbent Materials. Macromol. 2024; 4(2):304-319. https://doi.org/10.3390/macromol4020018
Chicago/Turabian StylePapageorgiou, Myrsini, Konstantinos N. Maroulas, Eleni Evgenidou, Dimitrios N. Bikiaris, George Z. Kyzas, and Dimitra A. Lambropoulou. 2024. "Simultaneous Removal of Seven Pharmaceutical Compounds from a Water Mixture Using Modified Chitosan Adsorbent Materials" Macromol 4, no. 2: 304-319. https://doi.org/10.3390/macromol4020018
APA StylePapageorgiou, M., Maroulas, K. N., Evgenidou, E., Bikiaris, D. N., Kyzas, G. Z., & Lambropoulou, D. A. (2024). Simultaneous Removal of Seven Pharmaceutical Compounds from a Water Mixture Using Modified Chitosan Adsorbent Materials. Macromol, 4(2), 304-319. https://doi.org/10.3390/macromol4020018