-
Lignin as a Natural Antioxidant: Chemistry and Applications
-
Techno Functionalities of White Bean Protein Concentrate: A Comparative Study with Soy and Pea Proteins
-
Effect of Thermal Treatment and the Addition of Texture Modifiers on the Rheological Properties and the Microflora of Reconstituted Kefir Powder
Journal Description
Macromol
Macromol
is an international, peer-reviewed, open access journal on all aspects of macromolecular research published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, CAPlus / SciFinder, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 21.5 days after submission; acceptance to publication is undertaken in 3.9 days (median values for papers published in this journal in the second half of 2024).
- Journal Rank: CiteScore - Q2 (Materials Science (miscellaneous))
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
An Overview of Starch-Based Materials for Sustainable Food Packaging: Recent Advances, Limitations, and Perspectives
Macromol 2025, 5(2), 19; https://doi.org/10.3390/macromol5020019 - 15 Apr 2025
Abstract
As the global plastic pollution crisis intensifies, the development of sustainable food packaging materials has become a priority. Starch-based films present a viable, biodegradable alternative to petroleum-derived plastics but face challenges such as poor moisture resistance and mechanical fragility. This review comprehensively examines
[...] Read more.
As the global plastic pollution crisis intensifies, the development of sustainable food packaging materials has become a priority. Starch-based films present a viable, biodegradable alternative to petroleum-derived plastics but face challenges such as poor moisture resistance and mechanical fragility. This review comprehensively examines state-of-the-art advancements in starch-based packaging, including polymer modifications, bio-nanocomposite incorporation, and innovative processing techniques that enhance functionality. Furthermore, the role of advanced analytical tools in elucidating the structure–performance relationships of starch films is highlighted. In particular, we provide an in-depth exploration of advanced characterization techniques, not only to assess starch-based food packaging but also to monitor starch retrogradation, including Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and iodine binding (Blue Value). We also explore cutting-edge developments in active and intelligent packaging, where starch films are functionalized with bioactive compounds for antimicrobial protection and freshness monitoring. While substantial progress has been made, critical challenges remain in upscaling these technologies for industrial production. This review provides a roadmap for future research and the industrial adoption of starch-derived packaging solutions.
Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
►
Show Figures
Open AccessArticle
Polysaccharides from Brown Seaweeds (Padina boergesenii and Sargassum euryphyllum) as Promising Inhibitors of SARS-CoV-2: Characterization, Mechanisms, and Therapeutic Potential
by
Saly Gheda, Ali M. Karkour, Shimaa El Shafay, Mohamed GabAllah, João Cotas and Leonel Pereira
Macromol 2025, 5(2), 18; https://doi.org/10.3390/macromol5020018 - 10 Apr 2025
Abstract
Unexpected mutations in SARS-CoV-2 produce unique variations. While numerous vaccines and antiviral medications are available for SARS-CoV-2, their use in controlling and preventing COVID-19 is restricted in some areas and countries due to accessibility and cost issues. This study investigated polysaccharides produced from
[...] Read more.
Unexpected mutations in SARS-CoV-2 produce unique variations. While numerous vaccines and antiviral medications are available for SARS-CoV-2, their use in controlling and preventing COVID-19 is restricted in some areas and countries due to accessibility and cost issues. This study investigated polysaccharides produced from two brown seaweed (Padina boergesenii and Sargassum euryphyllum) for their capacity to inhibit SARS-CoV-2. The seaweed polysaccharides were characterized and identified using ultraviolet and visible (UV/VIS) and Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectra. The polysaccharides inhibited SARS-CoV-2 propagation with inhibitory concentration 50% (IC50) values ranging from 24.2 to 29.3 µg/mL and cytotoxicity concentration 50% (CC50) values for Vero-E6 cells ranging from 587.7 to 396.4 µg/mL for P. boergesenii and S. euryphyllum, respectively. P. boergesenii polysaccharide had a more substantial antiviral potential than S. euryphyllum against SARS-CoV-2 and appeared more promising. At a concentration of 575 µL/mL of P. boergesenii polysaccharide, the virucidal mechanism was found to be the most effective, followed by viral adsorption and replication, with viral inhibition percentages of 68.6% ± 0.8, 57.1% ± 1.4, and 37.2 ± 3, respectively, compared to remdesivir as an antiviral drug. Thus, we concluded that brown seaweed alginate polysaccharides efficiently inhibit SARS-CoV-2 from spreading by preventing viral entry. Finally, P. boergesenii polysaccharide looked promising as a potential therapeutic candidate for the treatment of COVID-19.
Full article
(This article belongs to the Special Issue Recent Trends in Carbohydrate-Based Therapeutics)
►▼
Show Figures

Figure 1
Open AccessArticle
The Clear Choice: Developing Transparent Cork for Next-Generation Sustainable Materials
by
Pedro Gil, Pedro L. Almeida, Maria H. Godinho and Ana P. C. Almeida
Macromol 2025, 5(2), 17; https://doi.org/10.3390/macromol5020017 - 8 Apr 2025
Abstract
Many modern technologies rely on materials that harm the environment. Glass manufacturing, for instance, is both expensive and environmentally damaging. In response, scientists have developed a technique to replace glass with transparent wood, an innovative, versatile, and sustainable alternative. Wood naturally retains heat,
[...] Read more.
Many modern technologies rely on materials that harm the environment. Glass manufacturing, for instance, is both expensive and environmentally damaging. In response, scientists have developed a technique to replace glass with transparent wood, an innovative, versatile, and sustainable alternative. Wood naturally retains heat, is durable, and remains cost-effective, making it promising substitute for glass and plastic in window production. This innovation highlights the urgent need for eco-friendly technologies to replace or improve existing materials. This work explores cork as a sustainable alternative for producing transparent materials, potentially replacing transparent wood. Unlike wood, cork can be harvested from the same tree for up to 300 years. The process followed a method like transparent wood production, involving delignification, bleaching, and forced polymer impregnation. The choice of bleaching agent significantly impacted results—samples treated with sodium hypochlorite solution appeared whiter but became extremely fragile, whereas hydrogen peroxide preserved mechanical properties better. The resin-to-hardener ratio was crucial, with higher resin content improving polymer infiltration and transparency. While fully transparent cork was not achieved, the resulting translucent material lays the groundwork for future research in this field.
Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Advances in Cellulose-Based Materials)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Thermal Evaluation of Biocomposites Made from Poly(Lactic Acid) and Cottonseed Byproducts
by
Zhongqi He, Sunghyun Nam, Sourabh Kulkarni, Mohammad Bagheri Kashani and Ramaswamy Nagarajan
Macromol 2025, 5(2), 16; https://doi.org/10.3390/macromol5020016 - 8 Apr 2025
Abstract
Poly(lactic acid) (PLA) is derived from sugar-based materials. While it is a leading sustainable biopolymer, PLA has been integrated with other agricultural coproducts (e.g., lignin, protein, and starch) to reduce its cost and enhance its modulus and biodegradability. Cottonseed oil and meal are
[...] Read more.
Poly(lactic acid) (PLA) is derived from sugar-based materials. While it is a leading sustainable biopolymer, PLA has been integrated with other agricultural coproducts (e.g., lignin, protein, and starch) to reduce its cost and enhance its modulus and biodegradability. Cottonseed oil and meal are the byproducts of the cotton fiber industry. In this work, four biocomposites were formulated with PLA, cottonseed oil, washed cottonseed meal, and plasticizing reagent glycerol with different formulation ratios. The thermal degradation behaviors were examined via thermogravimetric (TG) analysis under air and nitrogen conditions with the neat PLA sample as a control. The thermal decomposition characteristic values were impacted by both the biocomposite formulation and the heating rates of 1, 2, 5, and 10 °C min−1. Results from two kinetic modeling methods that were examined indicated that the activation energy was relatively steady for the neat PLA in the whole degradation process. Generally, the low activation energy values of biocomposites other than PLA under nitrogen conditions implied that these cottonseed byproduct constituents promote the thermal decomposition of these biocomposites. However, the presence of oxygen would confound the thermal decomposition of the biocomposites, as shown by variable activation energy curves with higher values under air conditions. TG-FTIR analysis revealed that the major gaseous compounds were carbonyl, carbon dioxide, carbon monoxide, methane, and water, which were derived from the thermal decomposition of the biocomposites.
Full article
(This article belongs to the Special Issue Sustainable Processes to Multifunctional Bioplastics and Biocomposites)
►▼
Show Figures

Figure 1
Open AccessReview
Chitin, Chitosan and Its Derivatives: Antimicrobials and/or Mitigators of Water
by
Eva Scarcelli, Alessia Catalano, Domenico Iacopetta, Jessica Ceramella, Maria Stefania Sinicropi and Francesca Aiello
Macromol 2025, 5(2), 15; https://doi.org/10.3390/macromol5020015 - 8 Apr 2025
Abstract
►▼
Show Figures
Antimicrobial resistance (AMR) is a major global health problem, exacerbated by the excessive and inappropriate use of antibiotics in human medicine, animal care and agriculture. Therefore, new strategies and compounds are needed to overcome this issue. In this view, it may be appropriate
[...] Read more.
Antimicrobial resistance (AMR) is a major global health problem, exacerbated by the excessive and inappropriate use of antibiotics in human medicine, animal care and agriculture. Therefore, new strategies and compounds are needed to overcome this issue. In this view, it may be appropriate to reconsider existing biomaterials to alleviate antibiotic overuse. Chitin, a naturally abundant amino mucopolysaccharide, is a poly-β-1, 4-N-acetylglucosamine (GlcNAc). It is a white, hard, inelastic, nitrogenous polysaccharide and the major source of surface pollution in coastal areas. Chitosan derives from the partial N-deacetylation of chitin and originates from the shells of crustaceans and the fungi cell walls. It is a nontoxic natural antimicrobial polymer approved by GRAS (Generally Recognized as Safe by the United States Food and Drug Administration). Chitin and chitosan, as non-toxic biopolymers, are useful compounds for wastewater treatment to remove pollutants, such as pharmaceuticals, heavy metals and dyes. The described features make these biopolymers intriguing compounds to be investigated for their application as antibacterials.
Full article

Figure 1
Open AccessArticle
Simulating Industrial Recycling of Biodegradable Irrigation Pipe Scraps into Sustainable Monopolymer Blends
by
Vincenzo Titone, Erica Gea Rodi, Antonino Oliveri, Carmelo Giuffrè, Luigi Botta and Francesco Paolo La Mantia
Macromol 2025, 5(1), 14; https://doi.org/10.3390/macromol5010014 - 18 Mar 2025
Abstract
Recently, many industries are adopting closed-loop recycling models to recover and reuse production scrap in order to reduce waste, conserve resources, and minimize environmental impact. In this scenario, this paper aims to simulate such a model using biodegradable pipe scrap, with the objective
[...] Read more.
Recently, many industries are adopting closed-loop recycling models to recover and reuse production scrap in order to reduce waste, conserve resources, and minimize environmental impact. In this scenario, this paper aims to simulate such a model using biodegradable pipe scrap, with the objective of studying how the concentration of recycled biodegradable pipe scrap affects mechanical and rheological properties and to evaluate the effectiveness of this approach. Firstly, irrigation pipes were subjected to multiple extrusions to evaluate their thermal and mechanical stability under repeated processing. Subsequently, blends of virgin polymer and biodegradable irrigation pipe scraps (monopolymer blends) were prepared following an industrial approach. All systems were fully characterized through mechanical and rheological tests. The results obtained showed that multiple extrusions had a significant impact on the mechanical and rheological properties of the pipe, while the presence of reprocessed pipe in the blend only minimally affected the characteristics of the virgin biopolymer, demonstrating the effectiveness of this approach.
Full article
(This article belongs to the Special Issue Sustainable Processes to Multifunctional Bioplastics and Biocomposites)
►▼
Show Figures

Figure 1
Open AccessReview
Targeting Breast and Gynecologic Cancers: The Role of Natural Products with Emphasis on Cinnamon and Its Derivatives—Advances in Nanoscale Therapeutics and Adjuvant Strategies
by
Mary A. Biggs and Ipsita A. Banerjee
Macromol 2025, 5(1), 13; https://doi.org/10.3390/macromol5010013 - 18 Mar 2025
Abstract
►▼
Show Figures
Members of the Cinnamomum genus have been utilized for medicinal treatment for millennia. In recent years, particular attention has been given to the bioactive metabolites involved in the medicinal properties of natural products and their extracts. Cinnamon is particularly interesting due to the
[...] Read more.
Members of the Cinnamomum genus have been utilized for medicinal treatment for millennia. In recent years, particular attention has been given to the bioactive metabolites involved in the medicinal properties of natural products and their extracts. Cinnamon is particularly interesting due to the presence of both terpenoid and polyphenol moieties, both of which have been extensively studied for their medicinal applications in the treatment of a wide range of conditions, from bacterial infection, obesity and diabetes to cancer and cardiovascular pathologies. Here, we reviewed some of the properties of cinnamon and its derivatives cinnamic acid, trans-cinnamaldehyde and beta-caryophyllene. In addition, recent advancements in the application of cinnamon and its derivatives in cancer, particularly focusing on gynecological and breast cancers, which present unique challenges to treatment due to late diagnosis, have been discussed. Current advancements to further enhance the delivery of cinnamon and its derivatives through nanoencapsulation and nanoparticulate strategies as well as the development of novel conjugates and hybrids are also discussed. Additionally, the use of cinnamon and its derivatives as adjuvants with chemotherapeutics that can work synergistically was also touched upon. Overall, biotechnological innovations have enhanced the delivery of natural products such as cinnamon and its derivatives and may pave the path for novel therapeutic strategies with fewer side effects and higher potency. Cinnamon represents a valuable source of developing novel anticancer materials that warrant additional research for development as potential interventions or combination treatments.
Full article

Graphical abstract
Open AccessArticle
Comparative Life Cycle Assessment of Recyclable Polyhydroxyurethanes Synthesized from Five- and Six-Membered Carbonates
by
Pauline Bron, Olivier Talon, Camille Bakkali-Hassani, Lourdes Irusta, Haritz Sardon, Vincent Ladmiral and Sylvain Caillol
Macromol 2025, 5(1), 12; https://doi.org/10.3390/macromol5010012 - 15 Mar 2025
Abstract
►▼
Show Figures
Polyhydroxyurethanes (PHUs) synthesized from cyclic carbonates are promising alternatives to conventional polyurethanes due to their advantageous isocyanate-free synthesis and reprocessability characteristics. While many studies focus on PHUs derived from five-membered cyclic carbonates (5CCs) for more sustainable synthesis routes, PHUs from six-membered cyclic carbonates
[...] Read more.
Polyhydroxyurethanes (PHUs) synthesized from cyclic carbonates are promising alternatives to conventional polyurethanes due to their advantageous isocyanate-free synthesis and reprocessability characteristics. While many studies focus on PHUs derived from five-membered cyclic carbonates (5CCs) for more sustainable synthesis routes, PHUs from six-membered cyclic carbonates (6CCs) exhibit enhanced reactivity towards amines. Their reprocessability is facilitated by the presence of hydroxyl groups along the polymer chain, enabling transcarbamoylation reactions. However, since non-catalyzed transcarbamoylation is typically a sluggish reaction, catalysts are often required to enhance network reprocessability. This study presents a life cycle assessment (LCA) of PHU-5CC and PHU-6CC syntheses, with catalysts, for recycling applications targeting end-of-life scenarios. Environmental impact categories, including climate change, particulate matter, fossil resource depletion, mineral and metal resource use and freshwater eutrophication, were evaluated. Sensitivity analyses were also conducted to assess key variables. Our results indicate that PHUs from 6CCs show a higher environmental footprint due to their solvent-intensive synthesis process. Despite the increased reactivity and shorter reaction times associated with the 6CC monomer, these benefits do not fully offset the environmental impacts of the synthesis process. In conclusion, this study highlights potential improvements for future PHU synthesis, such as solvent-free processes, metal-free catalysts and optimized reaction monitoring.
Full article

Graphical abstract
Open AccessReview
A Review of Marine Algae as a Sustainable Source of Antiviral and Anticancer Compounds
by
Ajit Kumar, Akshatha Soratur, Sumit Kumar and Balu Alagar Venmathi Maran
Macromol 2025, 5(1), 11; https://doi.org/10.3390/macromol5010011 - 7 Mar 2025
Abstract
►▼
Show Figures
Biopolymers, such as polysaccharides, polyphenols, alkaloids, and terpenoids, found in marine algae exhibit antiviral and anticancer properties. These compounds can inhibit viral replication, induce apoptosis in cancer cells, and enhance the immune response. Their diverse bioactive properties make marine algae a promising source
[...] Read more.
Biopolymers, such as polysaccharides, polyphenols, alkaloids, and terpenoids, found in marine algae exhibit antiviral and anticancer properties. These compounds can inhibit viral replication, induce apoptosis in cancer cells, and enhance the immune response. Their diverse bioactive properties make marine algae a promising source for the development of sustainable antiviral and anticancer therapies. A major advantage of marine algae is that they do not require freshwater or arable land and can be cultivated in seawater, thus making them sustainable substitutes for conventional resources. Additionally, their ability to sequester carbon and recycle nutrients enhances their environmental sustainability. Despite their promising biomedical potential, challenges, such as compound extraction, large-scale production, and clinical validation, must be addressed for effective drug development. The vast biological diversity of marine algae across different ocean ecosystems is a largely unexplored source of distinct chemical structures, which may be the basis for new therapeutic schemes. Despite their therapeutic potential, the translation of marine algae-derived compounds into clinical applications faces significant hurdles, including challenges in large-scale extraction, bioavailability enhancement, and regulatory approval. The need to extract particular compounds to make them available for large-scale production and to overcome issues such as bioavailability and regulatory policies are formidable challenges. Marine algae represent innovative advances in antiviral and anticancer drug development, but only when combined with ecologically sound cultivation methods, interdisciplinary approaches, and understanding. The integration of advanced biotechnological approaches, innovative gene editing techniques, and environmentally sustainable aquaculture practices is pivotal for harnessing the full potential of marine algae for the development of next-generation antiviral and anticancer therapeutics.
Full article

Figure 1
Open AccessArticle
Thiophosphate-Based Covalent Organic Framework (COF) or Porous Organic Polymer (POP)?
by
Christophe Menendez, Yannick Coppel, Baptiste Martin and Anne-Marie Caminade
Macromol 2025, 5(1), 10; https://doi.org/10.3390/macromol5010010 - 6 Mar 2025
Abstract
►▼
Show Figures
There are few examples of covalent organic frameworks (COFs) based on phosphorus as the building element, probably because the structure of most phosphorus derivatives is pyramidal, which may prevent the stacking expected for classical 2-dimensional COFs. In addition, they are generally associated with
[...] Read more.
There are few examples of covalent organic frameworks (COFs) based on phosphorus as the building element, probably because the structure of most phosphorus derivatives is pyramidal, which may prevent the stacking expected for classical 2-dimensional COFs. In addition, they are generally associated with linear difunctional derivatives. In this paper is reported the original association of a trifunctional 3-D compound with a trifunctional 2-D compound in an attempt to get a new COF. The condensation reaction between a thiophosphate derivative bearing three aldehydes and the trihydrazinotriazine has been carried out with the aim of obtaining either a COF or simply a porous organic polymer (POP), consisting in both cases of associated macrocycles, affording a new covalent triazine framework (CTF). The material resulting from this condensation has been characterized by multinuclear MAS NMR (31P, 1H, and 13C), IR, and thermogravimetric analysis (TGA). All these data confirmed the condensation reactions. However, BET (Brunauer–Emmett–Teller) measurements indicated that the porosity of this material is low. Trapping dyes in solution, as a model of pollutants, by the insoluble porous material 3 has been attempted.
Full article

Graphical abstract
Open AccessArticle
Design of a Novel Chitosan Derivatives and DOPO Flame Retardant and Its Application in Epoxy Resin
by
Yicheng Yang, Yue Lu, Wang Zhan and Qinghong Kong
Macromol 2025, 5(1), 9; https://doi.org/10.3390/macromol5010009 - 20 Feb 2025
Abstract
►▼
Show Figures
To expand the utilization of bio-based materials as flame retardants in epoxy resin (EP), a green Schiff base structural material (CSV) was synthesized via a one-pot approach employing chitosan and vanillin as the raw materials. Then, the CSV combined with 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide (DOPO) (the
[...] Read more.
To expand the utilization of bio-based materials as flame retardants in epoxy resin (EP), a green Schiff base structural material (CSV) was synthesized via a one-pot approach employing chitosan and vanillin as the raw materials. Then, the CSV combined with 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide (DOPO) (the mass ratio between CSV and DOPO was 1:2, written as CSV-DOPO) improved the flame retardancy of the EP. When the amount of CSV−DOPO in the EP was only 3 wt%, the thermogravimetric analysis (TGA) results indicated that the residue of the EP composites was 50.6% higher than that of the EP. The combustion class of the EP/3 wt% CSV−DOPO composites achieved a UL-94 V0 rating and the limit oxygen index (LOI) reached 34.0%. The cone calorimeter test (CCT) showed that the peak heat release rate (PHHR), total heat release (THR), total smoke release (TSP), and peak carbon dioxide production (PCO2P) of the EP/3 wt% CSV−DOPO composites decreased by 32.3%, 22.0%, 4.6%, and 51.0%, respectively, compared to the EP. The flame-retardancy mechanism was studied by scanning electron microscopy (SEM) and Raman spectra. The quenching effect of phosphorus-containing radicals, the dilution effect of noncombustible gases, and the impeding effect of the carbon layer in the condensed phase contributed collectively to the excellent flame retardancy of the EP/CSV−DOPO composites. Considering the facile preparation method and small addition amount of the flame retardant, the present work provides a convenient solution for the preparation of modified EP with good flame retardancy and heat stability, which is expected to be widely used in industries.
Full article

Figure 1
Open AccessArticle
The Use of Common Bean and Mesquite Pods Flours as Partial Substitute of Semolina, Impact of Their Proteins and Polysaccharides in the Physical, Chemical, and Microstructural Characteristics of Spaghetti Pasta
by
Alejandro Pérez-Lozano, José-Alberto Gallegos-Infante, Manuel Humberto Chaírez-Ramírez, Nuria-Elizabeth Rocha-Guzmán, Martha Rocío Moreno-Jiménez, Luz-Araceli Ochoa-Martínez, Ignacio Villanueva Fierro, Verónica Loera Castañeda and Luis Medina-Torres
Macromol 2025, 5(1), 8; https://doi.org/10.3390/macromol5010008 - 12 Feb 2025
Abstract
►▼
Show Figures
Spaghetti pasta is a popular food; different ingredients than wheat have been explored to increase their nutritional value, the use of mesquite flour with pea protein remains unexplored. This study aimed to evaluate the impact of substituting semolina with mesquite pod flour and
[...] Read more.
Spaghetti pasta is a popular food; different ingredients than wheat have been explored to increase their nutritional value, the use of mesquite flour with pea protein remains unexplored. This study aimed to evaluate the impact of substituting semolina with mesquite pod flour and pea protein isolate on the techno-functional properties of spaghetti. Spaghetti was prepared using semolina hydrated to 35–40%, (15 cm strands), dried at 50 or 60 °C until 7–8% moisture. Semolina was substituted (0–30%), with pea protein isolate (PPI) (0–20%) and mesquite flour (0–25%). Guar and xanthan gum were added (0–1%). Proximate analysis, trypsin inhibitors, culinary properties, water absorption, texture profile, color, soluble protein, protein, starch digestibility, Raman and confocal microscopy were performed. The legume incorporation increased the protein content and digestibility of the pasta. Although the culinary properties were affected by legume substitution, levels of 75–85% substitution yielded acceptable results. Spaghetti containing PPI and mesquite flour, dried at 60 °C, showed similar secondary protein structure compared to the control. However, mesquite flour notably altered the color of the pasta. The combination of PPI, mesquite flour, and hydrocolloids improved protein availability while reducing available starch and enhancing the nutritional quality of the spaghetti.
Full article

Figure 1
Open AccessArticle
Effect of Thermal Treatment and the Addition of Texture Modifiers on the Rheological Properties and the Microflora of Reconstituted Kefir Powder
by
Stylianos Exarhopoulos, Euripides Krystallis, Eleni Rousi, Olga Groztidou, Despoina Georgiou, Eleni P. Kalogianni, Athanasios Goulas and Georgia Dimitreli
Macromol 2025, 5(1), 7; https://doi.org/10.3390/macromol5010007 - 6 Feb 2025
Cited by 1
Abstract
►▼
Show Figures
The present study examines the effect of low-temperature thermal treatment before drying, through storage at −10 °C and 4 °C for 72 h, respectively, on the physicochemical and microbiological properties of spray-dried kefir powder. Furthermore, with the intention of improving the rheological behavior
[...] Read more.
The present study examines the effect of low-temperature thermal treatment before drying, through storage at −10 °C and 4 °C for 72 h, respectively, on the physicochemical and microbiological properties of spray-dried kefir powder. Furthermore, with the intention of improving the rheological behavior of the reconstituted product, texture modifiers were employed including milk proteins (milk proteins, sodium caseinates, and whey protein concentrates) and carrageenan. According to the results, the low-temperature thermal treatment of kefir, prior to drying, resulted to an increased moisture content and yellowness of the kefir powder samples, with a simultaneous drop to the whiteness index and an increase of the particle size in both the powder and the reconstituted samples. The sample with prior treatment at 4 °C for 72 h, exhibited decreased pH values and increased acidity for both kefir and reconstituted product, while it also improved post drying population survival of lactobacilli and yeasts. The reconstituted sample with prior treatment at −10 °C for 72 h, exhibited evident pseudoplastic behavior, which, at low shear rates, yielded viscosity values very close to those of the fresh control kefir. Addition of sodium caseinates, in the absence and/or simultaneous presence of carrageenan, resulted to the highest viscosity increase of the reconstituted products. Milk proteins with the combined presence of carrageenan exhibited similar apparent viscosity values to the control.
Full article

Figure 1
Open AccessArticle
Polyvinyl Alcohol Films Reinforced with Nanocellulose from Rice Husk
by
Gabriel Monteiro Cholant, Mariane Weirich Bosenbecker, Alexandra Augusta Reichert, Cesar Augusto Gonçalves Beatrice, Thales Castilhos Freitas, Naurienni Dutra Freitas, Nathalia Vieira Villar de Nunes, Alexandre Ferreira Galio, André Luiz Missio and Amanda Dantas de Oliveira
Macromol 2025, 5(1), 6; https://doi.org/10.3390/macromol5010006 - 5 Feb 2025
Abstract
Progress in the field of biodegradable materials has been significantly accelerated in recent years, driven by the search for sustainable substitutes for fossil-derived resources. This study investigates the formulation of biodegradable films composed of polyvinyl alcohol (PVA) and nanocellulose extracted from rice husk.
[...] Read more.
Progress in the field of biodegradable materials has been significantly accelerated in recent years, driven by the search for sustainable substitutes for fossil-derived resources. This study investigates the formulation of biodegradable films composed of polyvinyl alcohol (PVA) and nanocellulose extracted from rice husk. The rice husk underwent alkaline treatment and bleaching for cellulose extraction, followed by sulfuric acid hydrolysis to obtain nanocellulose. The cellulose and nanocellulose were characterized through Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Thermogravimetric Analysis (TGA). Films of pure PVA and those reinforced with 1 wt. % of nanocellulose were prepared using the solvent casting method. The evaluations showed that the modulus of elasticity and tensile strength of the PVA/nanocellulose films were increased by 295.45% and 29.6%, respectively, compared to the pure PVA film. The PVA/nanocellulose film exhibited the lowest solubility and water vapor permeability. Optical Microscopy confirmed a flawless surface for the nanocellulose-reinforced film, while the cellulose- and rice husk-reinforced films displayed irregularities. In the biodegradability assessment, the nanocellulose-reinforced film was the only one that withstood the experimental conditions. The results highlight the effectiveness of nanocellulose in enhancing PVA properties, making these films promising for sustainable packaging applications.
Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Advances in Cellulose-Based Materials)
►▼
Show Figures

Figure 1
Open AccessReview
Lignin as a Natural Antioxidant: Chemistry and Applications
by
Hasan Sadeghifar and Arthur J. Ragauskas
Macromol 2025, 5(1), 5; https://doi.org/10.3390/macromol5010005 - 31 Jan 2025
Cited by 1
Abstract
►▼
Show Figures
The growing interest in renewable and natural antioxidants has positioned lignin as one of the most significant bioresources for sustainable applications. Lignin, a polyphenolic biomolecule and a major by-product of chemical pulping and biorefinery processes, is abundant and widely accessible. Recent advancements in
[...] Read more.
The growing interest in renewable and natural antioxidants has positioned lignin as one of the most significant bioresources for sustainable applications. Lignin, a polyphenolic biomolecule and a major by-product of chemical pulping and biorefinery processes, is abundant and widely accessible. Recent advancements in lignin modification, fractionation, and innovative biorefinery techniques have expanded its potential applications, particularly as a natural antioxidant. This review explores the underlying chemistry of lignin’s antioxidant activities, from model compounds to technical lignin resources, and examines its current applications. Additionally, we highlight the influence of lignin’s chemical structure and functional groups on its antioxidant efficacy, emphasizing its promising role in the development of practical and sustainable solutions.
Full article

Graphical abstract
Open AccessArticle
Effects of the Combination of Chemical Pretreatments and Dry Grinding of the Arundo donax L. Plant
by
Patricia O. Schmitt, Débora da S. Rodrigues, Matheus de P. Goularte, Silvia H. F. da Silva, Marcilio M. Morais, Darci A. Gatto, Cláudia F. Lemons e Silva, Camila M. Cholant and André L. Missio
Macromol 2025, 5(1), 4; https://doi.org/10.3390/macromol5010004 - 19 Jan 2025
Abstract
Arundo donax L. is a plant with great potential as lignocellulosic biomass, being a promising source for the development of biodegradable materials. This study evaluated the effects of different chemical pretreatments (H2SO4, NaOH, and NaClO) combined with dry milling
[...] Read more.
Arundo donax L. is a plant with great potential as lignocellulosic biomass, being a promising source for the development of biodegradable materials. This study evaluated the effects of different chemical pretreatments (H2SO4, NaOH, and NaClO) combined with dry milling on the physicochemical properties of biomass. Pretreatment with NaClO was the most effective in removing lignin, reducing its content to 0.2%, while increasing the cellulose content to 67%. Pretreatment with H2SO4, although retaining a higher lignin content (24%), resulted in the greatest reduction in particle size, reaching a mean diameter (Dm) of 44.31 µm after 20 h of milling. Density analysis revealed that the raw samples reached a maximum density of 0.218 g/cm3 after 20 h of milling, with the pretreated samples showing lower densities due to the removal of structural components. Thermal analysis showed mass losses of up to 66.4% for samples pretreated with NaClO after 10 h of milling, indicating significant structural changes and improved thermal stability. Morphological analysis via SEM demonstrated elongated and fine particles, with acid pretreatment resulting in the most pronounced structural changes. These findings highlight the efficiency of combining chemical and physical pretreatments to modify the structure of A. donax L., optimizing its properties for the production of high-performance biodegradable materials.
Full article
(This article belongs to the Special Issue Sustainable Processes to Multifunctional Bioplastics and Biocomposites)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Techno-Functionalities of White Bean Protein Concentrate: A Comparative Study with Soy and Pea Proteins
by
Paula Zambe Azevedo, Juliana Eloy Granato Costa, Jessica da Silva Matos, Breno Rodrigues de Souza, Sueli Rodrigues, Fabiano André Narciso Fernandes, Vanelle Maria Silva, Márcia Cristina Teixeira Ribeiro Vidigal, Paulo Cesar Stringheta, Evandro Martins and Pedro Henrique Campelo
Macromol 2025, 5(1), 3; https://doi.org/10.3390/macromol5010003 - 15 Jan 2025
Cited by 1
Abstract
The study of the techno-functional properties of novel plant-based proteins has gained importance due to their as alternatives to conventional proteins in food systems. This work evaluated the techno-functional and structural properties of white bean protein concentrate (WBPC) in comparison with commercial soy
[...] Read more.
The study of the techno-functional properties of novel plant-based proteins has gained importance due to their as alternatives to conventional proteins in food systems. This work evaluated the techno-functional and structural properties of white bean protein concentrate (WBPC) in comparison with commercial soy and pea proteins. The WBPC exhibited a higher foaming capacity (FC) at neutral pH and excellent foam stability (FS) at both tested pH levels, outperforming the commercial proteins. Although the WBPC’s gelation occurred only at concentrations above 16% and its water-holding capacity (WHC) was lower than that of the soy and pea proteins, the WBPC showed a high binding capacity for nonpolar molecules, excelling in its oil-holding capacity (OHC) and forming stable emulsions, which are relevant for stabilization in food products. Additionally, WBPC can form more rigid gel networks, suitable for systems requiring greater mechanical strength. These techno-functional properties indicate that WBPC is a promising alternative source for the plant-based food industry, helping to meet the demand for innovative, sustainable products and contributing to the diversification of protein sources.
Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
►▼
Show Figures

Graphical abstract
Open AccessReview
Polyphenol–Macromolecule Interactions by Isothermal Titration Calorimetry
by
Maarit Karonen
Macromol 2025, 5(1), 2; https://doi.org/10.3390/macromol5010002 - 12 Jan 2025
Cited by 1
Abstract
►▼
Show Figures
Isothermal titration calorimetry (ITC) is a widely used and valuable technique for studying the binding interactions and the formation and dissociation of molecular complexes. ITC directly measures the energetics associated with the interactions and allows for a precise and complete thermodynamic description of
[...] Read more.
Isothermal titration calorimetry (ITC) is a widely used and valuable technique for studying the binding interactions and the formation and dissociation of molecular complexes. ITC directly measures the energetics associated with the interactions and allows for a precise and complete thermodynamic description of association and binding processes, thereby providing an understanding of the interaction mechanisms. In this review, the role, practical aspects related to the experimental design and setup, advantages, and challenges of using ITC to evaluate polyphenol–macromolecule binding are discussed in detail. The focus is on the possibilities offered by ITC, but at the same time, its limitations are taken into account, especially in the study of complex biological processes and in the subsequent reliable determination of thermodynamic parameters. Polyphenols and proteins typically exhibit exothermic interactions, producing strong signals and distinctive titration curves that can be fitted by one- or two-site binding models; of course, there are exceptions to this. Tannins and tannin fractions usually have a high binding stoichiometry and stronger interactions with proteins than the smaller polyphenols. The driving forces behind these interactions vary, but in many cases, both hydrogen bonding and hydrophobic interactions have been reported. The interactions between polyphenols and polysaccharides or lipid bilayers have been far less studied by ITC in comparison to polyphenol–protein interactions. ITC could be utilized more extensively to study polyphenol–macromolecule interactions, as it is an excellent tool for evaluating the thermodynamic parameters of these interactions, and when used together with other techniques, ITC can also help understand how these interactions affect bioavailability, food applications, and other uses of polyphenols.
Full article

Figure 1
Open AccessArticle
Ohmic Heating Nixtamalization Modifies Maize Starch and Affects the Structural and Physicochemical Characteristics of Instant Masa Flours
by
Elisa Dominguez-Hernandez, Jorge Rangel-Hernandez, Eduardo Morales-Sanchez and Marcela Gaytan-Martinez
Macromol 2025, 5(1), 1; https://doi.org/10.3390/macromol5010001 - 29 Dec 2024
Abstract
►▼
Show Figures
The objective of this study was to examine the changes in starch processed under various ohmic heating (OH) conditions in relation to the characteristics of nixtamalized maize. Ground and dehydrated nixtamalized doughs (masas) were analyzed. Samples were prepared using both OH and traditional
[...] Read more.
The objective of this study was to examine the changes in starch processed under various ohmic heating (OH) conditions in relation to the characteristics of nixtamalized maize. Ground and dehydrated nixtamalized doughs (masas) were analyzed. Samples were prepared using both OH and traditional nixtamalization methods for comparison. The OH process variables included cooking temperature (85 and 90 °C), heating time (0, 5, and 10 min), and voltage (120 and 130 V). Starch modifications were assessed through viscosity measurements, differential scanning calorimetry (DSC), X-ray diffraction, and scanning electron microscopy (SEM). The results showed that viscosity in OH-treated samples was influenced by both thermal conditions (time and temperature) and the electric field (at 130 V), due to gelatinization and electroporation, evidenced by starch granule damage in SEM. DSC and X-ray diffraction revealed gelatinization and a loss of crystalline structures, along with new interactions between starch components that stabilized the system and reduced peak viscosity in the OH masa flours.
Full article

Figure 1
Open AccessReview
Non-Conventional Starches: Properties and Potential Applications in Food and Non-Food Products
by
Hugo José Martins Carvalho, Milene Teixeira Barcia and Marcio Schmiele
Macromol 2024, 4(4), 886-909; https://doi.org/10.3390/macromol4040052 - 17 Dec 2024
Cited by 1
Abstract
The increasing industrial demand and the search for novel ingredients in food and non-food sectors have driven research efforts toward alternatives to traditional commercial starches, emphasizing sustainability and the valorization of native crops, thereby promoting income generation for small-scale farmers. The extraction of
[...] Read more.
The increasing industrial demand and the search for novel ingredients in food and non-food sectors have driven research efforts toward alternatives to traditional commercial starches, emphasizing sustainability and the valorization of native crops, thereby promoting income generation for small-scale farmers. The extraction of these starches through aqueous methods, employing reductive and/or alkaline agents, can impact their structure and technological properties. These starches exhibit distinct physicochemical, morphological, crystalline, thermal, and nutritional characteristics, influenced by factors such as botanical origin. Although certain limitations may exist in their technological applications, physical, chemical, and/or enzymatic modification methods, or a combination thereof, are employed to enhance these properties for specific uses. These alternative starch sources present potential applications across the food, pharmaceutical, paper, medicinal, and cosmetic industries, underscoring their versatility and unique advantages. Nonetheless, ongoing research is essential to fully explore their composition and potential applications. This review serves as a valuable resource for researchers and professionals interested in sustainable and innovative alternatives to conventional starches.
Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Nano, Macromol, Nanomaterials, Polymers, Gels
Future Trends in Polymer Science: Materials, Design, and Advanced Applications
Topic Editors: Emi Haladjova, Olya StoilovaDeadline: 31 January 2026

Conferences
Special Issues
Special Issue in
Macromol
Sustainable Processes to Multifunctional Bioplastics and Biocomposites
Guest Editor: Valentina SessiniDeadline: 30 April 2025
Special Issue in
Macromol
Editorial Board Members’ Collection Series: Advances in Cellulose-Based Materials
Guest Editors: John H.T. Luong, Zhaobin QiuDeadline: 30 September 2025
Special Issue in
Macromol
Recent Trends in Carbohydrate-Based Therapeutics
Guest Editor: Rajendra RohokaleDeadline: 30 September 2025
Topical Collections
Topical Collection in
Macromol
Advances in Biodegradable Polymers
Collection Editor: Dimitrios Bikiaris