Thymic Extracellular Matrix in the Thymopoiesis: Just a Supporting?
Abstract
:1. The State of the Art
2. Influence of Thymic ECM in Thymopoiesis
3. Future Perspectives
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 2020, 11, 5120. [Google Scholar] [CrossRef] [PubMed]
- Yue, B. Biology of the Extracellular Matrix. J. Glaucoma 2014, 23, S20–S23. [Google Scholar] [CrossRef] [PubMed]
- Thapa, P.; Farber, D.L. The Role of the Thymus in the Immune Response. Thorac. Surg. Clin. 2019, 29, 123–131. [Google Scholar] [CrossRef]
- Savino, W.; Mendes-Da-Cruz, D.; Smaniotto, S.; Silva, E.; Villa-Verde, D.M.S. Molecular mechanisms governing thymocyte migration: Combined role of chemokines and extracellular matrix. J. Leukoc. Biol. 2004, 75, 951–961. [Google Scholar] [CrossRef]
- Savino, W. The elastic system in the thymus of the opossum Didelphis marsupialis aurita. Anat. Anzeiger. 1982, 151, 70–73. [Google Scholar]
- Schroen, D.J.; Cheung, H.T. Interaction of Mouse Thymocytes and a Thymocyte-like Cell Line with the ECM Glycoprotein Entactin. Cell. Immunol. 1996, 167, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Savino, W.; Berrih, S. Thymic Extracellular Matrix in Myasthenia Gravis. Lancet 1984, 324, 45–46. [Google Scholar] [CrossRef]
- Ruco, L.P.; Paradiso, P.; Pittiglio, M.; Diodoro, M.G.; Gearing, A.J.; Mainiero, F.; Gismondi, A.; Santoni, A.; Baroni, C.D. Tissue distribution of very late activation antigens-1/6 and very late activation antigen ligands in the normal thymus and in thymoma. Am. J. Pathol. 1993, 142, 765–772. [Google Scholar]
- Villa-Verde, D.M.S.; Silva-Monteiro, E.; Jasiulionis, M.; Farias-De-Oliveira, D.A.; Brentani, R.R.; Savino, W.; Chammas, R. Galectin-3 modulates carbohydrate-dependent thymocyte interactions with the thymic microenvironment. Eur. J. Immunol. 2002, 32, 1434–1444. [Google Scholar] [CrossRef]
- James, K.D.; Legler, D.F.; Purvanov, V.; Ohigashi, I.; Takahama, Y.; Parnell, S.M.; White, A.J.; Jenkinson, W.E.; Anderson, G. Medullary stromal cells synergize their production and capture of CCL21 for T-cell emigration from neonatal mouse thymus. Blood Adv. 2021, 5, 99–112. [Google Scholar] [CrossRef]
- Patel, D.D.; Hale, L.P.; Whichard, L.P.; Radcliff, G.; Mackay, C.; Haynes, B.F. Expression of CD44 molecules and CD44 ligands during human thymic fetal development: Expression of CD44 isoforms is developmentally regulated. Int. Immunol. 1995, 7, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Lannes-Vieira, J.; Dardenne, M.; Savino, W. Extracellular matrix components of the mouse thymus microenvironment: Ontogenetic studies and modulation by glucocorticoid hormones. J. Histochem. Cytochem. 1991, 39, 1539–1546. [Google Scholar] [CrossRef]
- Savino, W.; Martins, S.A.; Neves-Dos-Santos, S.; Smaniotto, S.; Ocampo, J.; Mendes-Da-Cruz, D.; Terra-Granado, E.; Kusmenok, O.; Villa-Verde, D. Thymocyte migration: An affair of multiple cellular interactions? Braz. J. Med. Biol. Res. 2003, 36, 1015–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murdoch, A.D.; Liu, B.; Schwarting, R.; Tuan, R.S.; Iozzo, R.V. Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J. Histochem. Cytochem. 1994, 42, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, C.S.; Lyra, J.S.P.O.; Dalmau, S.R.; Savino, W. In Vivo and In Vitro Expression of Tenascin by Human Thymic Microenvironmental Cells. Dev. Immunol. 1995, 4, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Berrih, S.; Savino, W.; Cohen, S. Extracellular matrix of the human thymus: Immunofluorescence studies on frozen sections and cultured epithelial cells. J. Histochem. Cytochem. 1985, 33, 655–664. [Google Scholar] [CrossRef]
- Lyra, J.S.P.O.; Madi, K.; Maeda, C.T.; Savino, W. Thymic extracellular matrix in human malnutrition. J. Pathol. 1993, 171, 231–236. [Google Scholar] [CrossRef]
- Docampo, M.J.; Cabrera, J.; Segalés, J.; Bassols, A. Immunohistochemical Investigation of Extracellular Matrix Components in the Lymphoid Organs of Healthy Pigs and Pigs with Systemic Disease Caused by Circovirus Type 2. J. Comp. Pathol. 2014, 151, 1–9. [Google Scholar] [CrossRef]
- Stepanek, O.; Brdicka, T.; Angelisova, P.; Horvath, O.; Spicka, J.; Stockbauer, P.; Man, P.; Horejsi, V. Interaction of Late Apoptotic and Necrotic Cells with Vitronectin. PLoS ONE 2011, 6, e19243. [Google Scholar] [CrossRef] [Green Version]
- Savino, W.; Mendes-Da-Cruz, D.; Lepletier, A.; Dardenne, M. Hormonal control of T-cell development in health and disease. Nat. Rev. Endocrinol. 2015, 12, 77–89. [Google Scholar] [CrossRef]
- Savino, W.; Dardenne, M. Nutritional imbalances and infections affect the thymus: Consequences on T-cell-mediated immune responses. Proc. Nutr. Soc. 2010, 69, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Lins, M.P.; Smaniotto, S. Potential impact of SARS-CoV-2 infection on the thymus. Can. J. Microbiol. 2021, 67, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Savino, W. The thymic microenvironment in infectious diseases. Memórias Inst. Oswaldo Cruz 1990, 85, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, P.; Su, D.-M.; van Oers, N.S.C. Thymus Functionality Needs More Than a Few TECs. Front. Immunol. 2022, 13, 864777. [Google Scholar] [CrossRef] [PubMed]
- Rosichini, M.; Catanoso, M.; Screpanti, I.; Felli, M.P.; Locatelli, F.; Velardi, E. Signaling Crosstalks Drive Generation and Regeneration of the Thymus. Front. Immunol. 2022, 13, 920306. [Google Scholar] [CrossRef] [PubMed]
- García-Ceca, J.; Montero-Herradón, S.; Alfaro, D.; Zapata, A.G. Increased epithelial-free areas in thymuses with altered EphB-mediated thymocyte–thymic epithelial cell interactions. Histochem. Cell Biol. 2017, 148, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Hakim, F.T.; Gress, R.E. The Thymus and the Immune System: Layered Levels of Control. J. Thorac. Oncol. 2010, 5, S273–S276. [Google Scholar] [CrossRef] [Green Version]
- Asnaghi, M.A.; Barthlott, T.; Gullotta, F.; Strusi, V.; Amovilli, A.; Hafen, K.; Srivastava, G.; Oertle, P.; Toni, R.; Wendt, D.; et al. Thymus Extracellular Matrix-Derived Scaffolds Support Graft-Resident Thymopoiesis and Long-Term In Vitro Culture of Adult Thymic Epithelial Cells. Adv. Funct. Mater. 2021, 31, 2010747. [Google Scholar] [CrossRef]
- Bortolomai, I.; Sandri, M.; Draghici, E.; Fontana, E.; Campodoni, E.; Marcovecchio, G.E.; Ferrua, F.; Perani, L.; Spinelli, A.; Canu, T.; et al. Gene Modification and Three-Dimensional Scaffolds as Novel Tools to Allow the Use of Postnatal Thymic Epithelial Cells for Thymus Regeneration Approaches. STEM CELLS Transl. Med. 2019, 8, 1107–1122. [Google Scholar] [CrossRef] [Green Version]
- Seach, N.; Mattesich, M.; Abberton, K.; Matsuda, K.; Tilkorn, D.J.; Rophael, J.; Boyd, R.L.; Morrison, W.A. Vascularized Tissue Engineering Mouse Chamber Model Supports Thymopoiesis of Ectopic Thymus Tissue Grafts. Tissue Eng. Part C Methods 2010, 16, 543–551. [Google Scholar] [CrossRef]
- Fan, Y.; Tajima, A.; Goh, S.K.; Geng, X.; Gualtierotti, G.; Grupillo, M.; Coppola, A.; Bertera, S.; A Rudert, W.; Banerjee, I.; et al. Bioengineering Thymus Organoids to Restore Thymic Function and Induce Donor-Specific Immune Tolerance to Allografts. Mol. Ther. 2015, 23, 1262–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, B.; Montel-Hagen, A.; Ge, S.; Blumberg, G.; Kim, K.; Klein, S.; Zhu, Y.; Parekh, C.; Balamurugan, A.; Yang, O.O.; et al. Engineering the Human Thymic Microenvironment to Support Thymopoiesis In Vivo. Stem Cells 2014, 32, 2386–2396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hun, M.; Barsanti, M.; Wong, K.; Ramshaw, J.; Werkmeister, J.; Chidgey, A.P. Native thymic extracellular matrix improves in vivo thymic organoid T cell output, and drives in vitro thymic epithelial cell differentiation. Biomaterials 2017, 118, 1–15. [Google Scholar] [CrossRef]
- Hsu, H.-P.; Chen, Y.-T.; Chen, Y.-Y.; Lin, C.-Y.; Chen, P.-Y.; Liao, S.-Y.; Lim, C.C.Y.; Yamaguchi, Y.; Hsu, C.-L.; Dzhagalov, I.L. Heparan sulfate is essential for thymus growth. J. Biol. Chem. 2021, 296, 100419. [Google Scholar] [CrossRef] [PubMed]
- Haidl, I.D.; Falk, I.; Nerz, G.; Eichmann, K. Metalloproteinase-Dependent Control of Thymocyte Differentiation and Proliferation. Scand. J. Immunol. 2006, 64, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Trotman-Grant, A.C.; Mohtashami, M.; Casal, J.d.S.; Martinez, E.C.; Lee, D.; Teichman, S.; Brauer, P.M.; Han, J.; Anderson, M.K.; Zúñiga-Pflücker, J.C. DL4-μbeads induce T cell lineage differentiation from stem cells in a stromal cell-free system. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
ECM Component | Localization | References |
---|---|---|
Elastic fibers | Capsule | [5] |
Entactin | Cortex | [6] |
Fibronectin | Basement membranes, Thymic septa, Perivascular space, and Cortex and medulla | [7,8] |
Galectin-3 | Corticomedullary junction and medulla | [9] |
Heparan sulfate | Medulla and blood vessels | [10] |
Hialuronic acid | Capsule, septum and vessels | [11] |
Laminin | Basement membranes, Thymic septa, Perivascular space, Cortex, and medulla | [7,8,12] |
Nidogen | Capsule, cortex, and medulla | [13] |
Perlecan | Blood vessels and capsule | [14] |
Tenascin | Corticomedullary junction, Medulla | [15] |
Type I collagen | Basement membrane, Septum, and blood vessels | [16] |
Type III collagen (reticulin) | Basement membrane, Subjacent to capsule, Septum, and blood vessels | [16,17] |
Type IV collagen | Basement membranes, Thymic septa and Perivascular space | [7] |
Versican | Minimal expression | [18] |
Vitronectin | Death thymocytes | [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lins, M.P. Thymic Extracellular Matrix in the Thymopoiesis: Just a Supporting? BioTech 2022, 11, 27. https://doi.org/10.3390/biotech11030027
Lins MP. Thymic Extracellular Matrix in the Thymopoiesis: Just a Supporting? BioTech. 2022; 11(3):27. https://doi.org/10.3390/biotech11030027
Chicago/Turabian StyleLins, Marvin Paulo. 2022. "Thymic Extracellular Matrix in the Thymopoiesis: Just a Supporting?" BioTech 11, no. 3: 27. https://doi.org/10.3390/biotech11030027
APA StyleLins, M. P. (2022). Thymic Extracellular Matrix in the Thymopoiesis: Just a Supporting? BioTech, 11(3), 27. https://doi.org/10.3390/biotech11030027