Chitosan Sponges for Efficient Accumulation and Controlled Release of C-Phycocyanin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Cultivation Conditions
2.2. C-Phycocyanin Extraction and Purification
2.3. C-Phycocyanin Quantification and Purity Determination
2.4. High-Performance Liquid Chromatography
2.5. Antioxidant Activity Measurements
2.6. Chitosan Sponge Preparation
2.7. Incorporation of C-PC into a Chitosan Sponge, Encapsulation Efficiency (Entry Efficiency), Load Capacity, and In Vitro Release Study
2.8. Microscopy Imaging
2.9. Fourier Transform Infrared Spectroscopy Measurements (FTIR)
2.10. Scanning Electron Microscopy of Sponges (SEM)
2.11. Statistical Analysis
3. Results and Discussion
3.1. Extraction and Purification of Phycocyanin
3.2. Characteristics of Pure C-PC
3.3. Chitosan Sponges
3.4. Sponge Chitosan–Phycocyanin
3.5. C-PC Release from the Sponge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thevarajah, B.; Nishshanka, G.K.S.H.; Premaratne, M.; Nimarshana, P.H.V.; Nagarajan, D.; Chang, J.S.; Ariyadasa, T.U. Large-Scale Production of Spirulina-Based Proteins and C-Phycocyanin: A Biorefinery Approach. Biochem. Eng. J. 2022, 185, 108541. [Google Scholar] [CrossRef]
- Glazer, A.N. Phycobilisome a Macromolecular Complex Optimized for Light Energy Transfer. BBA Rev. Bioenerg. 1984, 768, 29–51. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Chang, W.; Zhang, J.; Gui, L.; Guo, B.; Liang, D. Structure of C-Phycocyanin from Spirulina platensis at 2.2 A Resolution: A Novel Monoclinic Crystal Form for Phycobiliproteins in Phycobilisomes. Acta Cryst. 2001, D57, 784–792. [Google Scholar]
- Da Silva Figueira, F.; Moraes, C.C.; Kalil, S.J. C-Phycocyanin Purification: Multiple Processes for Different Applications. Brazilian J. Chem. Eng. 2018, 35, 1117–1128. [Google Scholar] [CrossRef]
- Dranseikienė, D.; Balčiūnaitė-Murzienė, G.; Karosienė, J.; Morudov, D.; Juodžiukynienė, N.; Hudz, N.; Gerbutavičienė, R.J.; Savickienė, N. Cyano-Phycocyanin: Mechanisms of Action on Human Skin and Future Perspectives in Medicine. Plants 2022, 11, 1249. [Google Scholar] [CrossRef] [PubMed]
- Madhyastha, H.K.; Radha, K.S.; Nakajima, Y.; Omura, S.; Maruyama, M. UPA Dependent and Independent Mechanisms of Wound Healing by C-Phycocyanin. J. Cell. Mol. Med. 2008, 12, 2691–2703. [Google Scholar] [CrossRef]
- Madhyastha, H.K.; Radha, K.S.; Sugiki, M.; Omura, S.; Maruyama, M. Purification of C-Phycocyanin from Spirulina fusiformis and Its Effect on the Induction of Urokinase-Type Plasminogen Activator from Calf Pulmonary Endothelial Cells. Phytomedicine 2006, 13, 564–569. [Google Scholar] [CrossRef]
- Dev, A.; Mohanbhai, S.J.; Kushwaha, A.C.; Sood, A.; Sardoiwala, M.N.; Choudhury, S.R.; Karmakar, S. κ-Carrageenan-C-Phycocyanin Based Smart Injectable Hydrogels for Accelerated Wound Recovery and Real-Time Monitoring. Acta Biomater. 2020, 109, 121–131. [Google Scholar] [CrossRef]
- Adli, S.A.; Ali, F.; Azmi, A.S.; Anuar, H.; Nasir, N.A.M.; Hasham, R.; Idris, M.K.H. Development of Biodegradable Cosmetic Patch Using a Polylactic Acid/Phycocyanin-Alginate Composite. Polymers 2020, 12, 1669. [Google Scholar] [CrossRef]
- Venugopal, V.C.; Thakur, A.; Chennabasappa, L.K.; Mishra, G.; Singh, K.; Rathee, P.; Ranjan, A. Phycocyanin Extracted from Oscillatoria minima Shows Antimicrobial, Algicidal, and Antiradical Activities: In Silico and In Vitro Analysis. Antiinflamm. Antiallergy Agents Med. Chem. 2019, 19, 240–253. [Google Scholar] [CrossRef]
- Nihal, B.; Vishal Gupta, N.; Gowda, D.V.; Manohar, M. Formulation and Development of Topical Anti Acne Formulation of Spirulina Extract. Int. J. Appl. Pharm. 2018, 10, 229–233. [Google Scholar] [CrossRef]
- Murugan, T.; Radhamadhavan, M. Screening for Antifungal and Antiviral Activity of C-Phycocyanin from Spirulina platensis. J. Pharm. Res. 2011, 4, 4161–4163. [Google Scholar]
- Suzery, M.; Hadiyanto; Majid, D.; Setyawan, D.; Sutanto, H. Improvement of Stability and Antioxidant Activities by Using Phycocyanin—Chitosan Encapsulation Technique. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bali, Indonesia, 25–27 October 2016; Volume 55, p. 012052. [Google Scholar]
- Castangia, I.; Manca, M.L.; Catalán-Latorre, A.; Maccioni, A.M.; Fadda, A.M.; Manconi, M. Phycocyanin-Encapsulating Hyalurosomes as Carrier for Skin Delivery and Protection from Oxidative Stress Damage. J. Mater. Sci. Mater. Med. 2016, 27, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Iber, B.T.; Kasan, N.A.; Torsabo, D.; Omuwa, J.W. A Review of Various Sources of Chitin and Chitosan in Nature. J. Renew. Mater. 2022, 10, 1097–1123. [Google Scholar] [CrossRef]
- Ghormade, V.; Pathan, E.K.; Deshpande, M.V. Can Fungi Compete with Marine Sources for Chitosan Production? Int. J. Biol. Macromol. 2017, 104, 1415–1421. [Google Scholar] [CrossRef]
- Al-Manhel, A.J.; Al-Hilphy, A.R.S.; Niamah, A.K. Extraction of Chitosan, Characterisation and Its Use for Water Purification. J. Saudi Soc. Agric. Sci. 2018, 17, 186–190. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A. Human Enzymatic Activities Related to the Therapeutic Administration of Chitin Derivatives. Cell. Mol. Life Sci. 1997, 53, 131–140. [Google Scholar] [CrossRef]
- Park, C.J.; Clark, S.G.; Lichtensteiger, C.A.; Jamison, R.D.; Johnson, A.J.W. Accelerated Wound Closure of Pressure Ulcers in Aged Mice by Chitosan Scaffolds with and without BFGF. Acta Biomater. 2009, 5, 1926–1936. [Google Scholar] [CrossRef]
- Muzzarelli, R. Depolymerization of Methyl Pyrrolidinone Chitosan by Lysozyme. Carbohydr. Polym. 1992, 19, 29–34. [Google Scholar] [CrossRef]
- Pan, W.; Qi, X.; Xiang, Y.; You, S.; Cai, E.; Gao, T.; Tong, X.; Hu, R.; Shen, J.; Deng, H. Facile formation of injectable quaternized chitosan/tannic acid hydrogels with antibacterial and ROS scavenging capabilities for diabetic wound healing. Int. J. Biol. Macromol. 2022, 195, 190–197. [Google Scholar] [CrossRef]
- Xiang, Y.; Qi, X.; Cai, E.; Zhang, C.; Wang, J.; Lan, Y.; Deng, H.; Shen, J.; Hu, R. Highly efficient bacteria-infected diabetic wound healing employing a melanin-reinforced biopolymer hydrogel. Chem. Eng. J. 2023, 460, 141852. [Google Scholar] [CrossRef]
- Gustiningtyas, A.; Setyaningsih, I.; Hardiningtyas, S.D.; Susila, A.A.R. Improvement Stability of Phycocyanin from Spirulina platensis Encapsulated by Water Soluble Chitosan Nanoparticles. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Penang, Malaysia, 9–11 September 2019; Institute of Physics Publishing: Bristol, UK, 2020; Volume 414, p. 012005. [Google Scholar]
- Yan, M.; Liu, B.; Jiao, X.; Qin, S. Preparation of Phycocyanin Microcapsules and Its Properties. Food Bioprod. Process. 2014, 92, 89–97. [Google Scholar] [CrossRef]
- Sukhinov, D.V.; Gorin, K.V.; Romanov, A.O.; Gotovtsev, P.M.; Sergeeva, Y.E. Increased C-Phycocyanin Extract Purity by Flocculation of Arthrospira platensis with Chitosan. Algal Res. 2021, 58, 102393. [Google Scholar] [CrossRef]
- Aiba, S.; Ogawa, T. Assessment of Growth Yield of a Blue-Green Alga, Spirulina platensis, in Axenic and Continuous Culture. J. Gen. Microbiol. 1977, 102, 179–182. [Google Scholar] [CrossRef]
- Lima, G.M.; Teixeira, P.C.N.; Teixeira, C.M.L.L.; Filócomo, D.; Lage, C.L.S. Influence of Spectral Light Quality on the Pigment Concentrations and Biomass Productivity of Arthrospira platensis. Algal Res. 2018, 31, 157–166. [Google Scholar] [CrossRef]
- Klepacz-Smółka, A.; Pietrzyk, D.; Szeląg, R.; Głuszcz, P.; Daroch, M.; Tang, J.; Ledakowicz, S. Effect of Light Colour and Photoperiod on Biomass Growth and Phycocyanin Production by Synechococcus PCC 6715. Bioresour. Technol. 2020, 313, 123700. [Google Scholar] [CrossRef]
- Bennett, A.; Bogorad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419–435. [Google Scholar] [CrossRef]
- Boussiba, S.; Richmond, A.E. Isolation and Characterization of Phycocyanins from the Blue-Green Alga Spirulina platensis. Arch. Microbiol. 1979, 120, 155–159. [Google Scholar] [CrossRef]
- Kurpan, D.; Idà, A.; Körner, F.; Lauceri, R.; Rocculi, P.; Phillips, R.; Schievano, A. Pilot-Scale Concentration and Partial Purification of Food-Grade Phycocyanin from Arthrospira platensis via Cross Flow Filtration: From Biomass to Final Product. J. Appl. Phycol. 2023. [Google Scholar] [CrossRef]
- Lemos, P.V.F.; Opretzka, L.C.F.; Almeida, L.S.; Cardoso, L.G.; da Silva, J.B.A.; de Souza, C.O.; Villarreal, C.F.; Druzian, J.I. Preparation and Characterization of C-Phycocyanin Coated with STMP/STPP Cross-Linked Starches from Different Botanical Sources. Int. J. Biol. Macromol. 2020, 159, 739–750. [Google Scholar] [CrossRef]
- Kumar, D.; Dhar, D.W.; Pabbi, S.; Kumar, N.; Walia, S. Extraction and Purification of C-Phycocyanin from Spirulina platensis (CCC540). Indian J. Plant Physiol. 2014, 19, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wong, Y.S.; Zheng, W. Purification and Characterization of Selenium-Containing Phycocyanin from Selenium-Enriched Spirulina platensis. Phytochemistry 2006, 67, 2424–2430. [Google Scholar] [CrossRef] [PubMed]
- Adjali, A.; Clarot, I.; Chen, Z.; Marchioni, E.; Boudier, A. Physicochemical Degradation of Phycocyanin and Means to Improve Its Stability: A Short Review. J. Pharm. Anal. 2022, 12, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Sevimli-Gür, C.; Onbaşılar, İ.; Atilla, P.; Çakar, N.; Deliloğlu-Gürhan, İ. Wound Healing Effects of C-Phycocyanin Isolated from Spirulina platensis. Planta Med. 2009, 75, PA59. [Google Scholar] [CrossRef]
- Gur, C.S.; Erdogan, D.K.; Onbasılar, I.; Atilla, P.; Cakar, N.; Gurhan, I.D. In Vitro and In Vivo Investigations of the Wound Wealing Effect of Crude Spirulina Extract and C-Phycocyanin. J. Med. Plants Res. 2013, 7, 425–433. [Google Scholar] [CrossRef]
- Gunes, S.; Tamburaci, S.; Dalay, M.C.; Deliloglu Gurhan, I. In Vitro Evaluation of Spirulina platensis Extract Incorporated Skin Cream With its Wound Healing and Antioxidant Activities. Pharm. Biol. 2017, 55, 1824–1832. [Google Scholar] [CrossRef]
- To, Q.M.; Tran, N.D.; Pham, P.T.K.; Ho, M.T.N.; Lai, B.D.; Le, T.Q.; Le, L.T.; Hoang, S.N. Study on Extracting Crude Phycocyanin from Spirulina Algae and Determining Its Ability in Protecting Fibroblasts from Oxidative Stress of Hydroxyl Peroxide. BME 2020. IFMBE Proc. 2022, 85, 657–668. [Google Scholar] [CrossRef]
- Setthamongkol, P.; Kulert, W.; Wanmanee, S. In Vitro Characterization and Assessment of a Potential Cosmetic Cream Containing Phycocyanin Extracted from Arthrospira platensis BUUC1503 Blue-Green Algae. J. Appl. Phycol. 2023, 35, 1685–1697. [Google Scholar] [CrossRef]
- Azaza, Y.B.; Li, S.; Nasri, M.; Nasri, R. Chitosan/Collagen-Based Hydrogels for Sustainable Development: Phycocyanin Controlled Release. Sustain. Chem. Pharm. 2023, 31, 100905. [Google Scholar] [CrossRef]
- Hadiyanto; Suzery, M.; Setyawan, D.; Majid, D.; Sutanto, H. Encapsulation of Phycocyanin-Alginate for High Stability and Antioxidant Activity. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bali, Indonesia, 25–27 October 2016; Volume 55, p. 012030. [Google Scholar]
CPC-250 | CPC-500 | CPC-1000 | |
---|---|---|---|
EE, % | 95.86 ± 0.26 | 94.17 ± 0.55 | 92.84 ± 0.50 |
LC, mg/g | 38.01 ± 2.02 | 82.03 ± 0.38 | 172.67 ± 0.47 |
C-PC | CPC-250 | CPC-500 | CPC-1000 | ||
---|---|---|---|---|---|
PI | 3.36 ± 0.24 | 3.55 ± 0.16 | 3.79 ± 0.08 | 4.43 ± 0.06 | |
DPPH | IC50, µg/mL | 212.73 | 161.47 | 146.12 | 116.81 |
TEAE | 174.47 | 229.85 | 253.99 | 317.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergeeva, Y.E.; Zakharevich, A.A.; Sukhinov, D.V.; Koshkalda, A.I.; Kryukova, M.V.; Malakhov, S.N.; Antipova, C.G.; Klein, O.I.; Gotovtsev, P.M.; Grigoriev, T.E. Chitosan Sponges for Efficient Accumulation and Controlled Release of C-Phycocyanin. BioTech 2023, 12, 55. https://doi.org/10.3390/biotech12030055
Sergeeva YE, Zakharevich AA, Sukhinov DV, Koshkalda AI, Kryukova MV, Malakhov SN, Antipova CG, Klein OI, Gotovtsev PM, Grigoriev TE. Chitosan Sponges for Efficient Accumulation and Controlled Release of C-Phycocyanin. BioTech. 2023; 12(3):55. https://doi.org/10.3390/biotech12030055
Chicago/Turabian StyleSergeeva, Yana E., Anastasia A. Zakharevich, Daniil V. Sukhinov, Alexandra I. Koshkalda, Mariya V. Kryukova, Sergey N. Malakhov, Christina G. Antipova, Olga I. Klein, Pavel M. Gotovtsev, and Timofei E. Grigoriev. 2023. "Chitosan Sponges for Efficient Accumulation and Controlled Release of C-Phycocyanin" BioTech 12, no. 3: 55. https://doi.org/10.3390/biotech12030055
APA StyleSergeeva, Y. E., Zakharevich, A. A., Sukhinov, D. V., Koshkalda, A. I., Kryukova, M. V., Malakhov, S. N., Antipova, C. G., Klein, O. I., Gotovtsev, P. M., & Grigoriev, T. E. (2023). Chitosan Sponges for Efficient Accumulation and Controlled Release of C-Phycocyanin. BioTech, 12(3), 55. https://doi.org/10.3390/biotech12030055