Strategies for Increasing the Throughput of Genetic Screening: Lessons Learned from the COVID-19 Pandemic within a University Community
Abstract
:1. Introduction
2. Materials and Methods
2.1. IPS COVID Lab Accreditation and Admission Proceedings
2.2. Sample Collection and Storage
2.3. Sample Pooling and Procedure Validation
2.4. Multiplex RT-qPCR and Validation
3. Results and Discussion
3.1. Sample Pooling
3.2. Multiplex RT-qPCR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, C.; Xu, H.; Shen, Q.; Zhang, X.; Fan, B.; Wang, C.; Zeng, B.; Li, Z.; Li, X.; Li, H. Diagnosis of the Coronavirus Disease (COVID-19): RRT-PCR or CT? Eur. J. Radiol. 2020, 126, 108961. [Google Scholar] [CrossRef]
- Direção Geral de Saúde (DGS) Portugal. COVID-19: Estratégia Nacional de Testes Para SARS-CoV-2; Direção Geral de Saúde: Lisboa, Portugal, 2022; pp. 1–14. [Google Scholar]
- Daniel, E.A.; Anbalagan, S.; Muthuramalingam, K.; Karunaianantham, R.; Karunakaran, L.P.; Nesakumar, M.; Selvachithiram, M.; Pattabiraman, S.; Natarajan, S.; Tripathy, S.P.; et al. Pooled Testing Strategies for SARS-CoV-2 Diagnosis: A Comprehensive Review. Diagn. Microbiol. Infect. Dis. 2021, 101, 115432. [Google Scholar] [CrossRef]
- Gul, I.; Zhai, S.; Zhong, X.; Chen, Q.; Yuan, X.; Du, Z.; Chen, Z.; Raheem, M.A.; Deng, L.; Leeansyah, E.; et al. Angiotensin-Converting Enzyme 2-Based Biosensing Modalities and Devices for Coronavirus Detection. Biosensors 2022, 12, 984. [Google Scholar] [CrossRef]
- Pavia, C.S.; Plummer, M.M. The Evolution of Rapid Antigen Detection Systems and Their Application for COVID-19 and Other Serious Respiratory Infectious Diseases. J. Microbiol. Immunol. Infect. 2021, 54, 776–786. [Google Scholar] [CrossRef]
- Dorfman, R. The Detection of Defective Members of Large Populations. Ann. Math. Stat. 1943, 14, 436–440. [Google Scholar] [CrossRef]
- Hanel, R.; Thurner, S. Boosting Test-Efficiency by Pooled Testing for SARS-CoV-2-Formula for Optimal Pool Size. PLoS ONE 2020, 15, e0240652. [Google Scholar] [CrossRef]
- Abdalhamid, B.; Bilder, C.R.; McCutchen, E.L.; Hinrichs, S.H.; Koepsell, S.A.; Iwen, P.C. Assessment of Specimen Pooling to Conserve SARS CoV-2 Testing Resources. Am. J. Clin. Pathol. 2020, 153, 715–718. [Google Scholar] [CrossRef]
- Baggio, F.; Hetzel, U.; Prähauser, B.; Dervas, E.; Michalopoulou, E.; Thiele, T.; Kipar, A.; Hepojoki, J. A Multiplex RT-PCR Method for the Detection of Reptarenavirus Infection. Viruses 2023, 15, 2313. [Google Scholar] [CrossRef]
- Chung, H.Y.; Jian, M.J.; Chang, C.K.; Lin, J.C.; Yeh, K.M.; Chen, C.W.; Chiu, S.K.; Wang, Y.H.; Liao, S.J.; Li, S.Y.; et al. Novel Dual Multiplex Real-Time RT-PCR Assays for the Rapid Detection of SARS-CoV-2, Influenza A/B, and Respiratory Syncytial Virus Using the BD MAX Open System. Emerg. Microbes Infect. 2021, 10, 161–166. [Google Scholar] [CrossRef]
- Koliopoulos, P.; Kayange, N.M.; Daniel, T.; Huth, F.; Gröndahl, B.; Medina-Montaño, G.C.; Pretsch, L.; Klüber, J.; Schmidt, C.; Züchner, A.; et al. Multiplex-RT-PCR-ELISA Panel for Detecting Mosquito-Borne Pathogens: Plasmodium Sp. Preserved and Eluted from Dried Blood Spots on Sample Cards. Malar. J. 2021, 20, 66. [Google Scholar] [CrossRef]
- Gene LinkTM Fluorescent Dyes Applications- Gene Link TM. Available online: https://www.genelink.com/oligo_modifications_reference/OMR_mod_category_applications.asp?mod_sp_cat_id=18 (accessed on 10 May 2024).
- Tombuloglu, H.; Sabit, H.; Al-Khallaf, H.; Kabanja, J.H.; Alsaeed, M.; Al-Saleh, N.; Al-Suhaimi, E. Multiplex Real-Time RT-PCR Method for the Diagnosis of SARS-CoV-2 by Targeting Viral N, RdRP and Human RP Genes. Sci. Rep. 2022, 12, 2853. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Laboratory Testing for Coronavirus Disease (COVID-19) in Suspected Human Cases: Interim Guidance, 19 March 2020; World Health Organization: Geneva, Switzerland, 2020; 7p. [Google Scholar]
- Mahmoud, S.A.; Ibrahim, E.; Thakre, B.; Teddy, J.G.; Raheja, P.; Ganesan, S.; Zaher, W.A. Evaluation of Pooling of Samples for Testing SARS-CoV-2 for Mass Screening of COVID-19. BMC Infect. Dis. 2021, 21, 360. [Google Scholar] [CrossRef]
- Mastrianni, D.; Falivena, R.; Brooks, T.; McDermott, B.; Tan, J.; Vandell, R.; Holland, M. Pooled Testing for SARS-CoV-2 in Hospitalized Patients. J. Hosp. Med. 2020, 15, 538–539. [Google Scholar] [CrossRef]
- Ball, J.; McNally, A. Pooled Testing for SARS-CoV-2 Could Provide the Solution to UK’s Testing Strategy. BMJ 2020, 371, m4312. [Google Scholar] [CrossRef]
- Mishra, B.; Behera, B.; Mohanty, M.; Ravindra, A.; Ranjan, J. Challenges and Issues of SARS-CoV-2 Pool Testing. Lancet Infect. Dis. 2020, 20, 1233. [Google Scholar] [CrossRef]
- Afzal, A. Molecular Diagnostic Technologies for COVID-19: Limitations and Challenges. J. Adv. Res. 2020, 26, 149–159. [Google Scholar] [CrossRef]
- Arevalo-Rodriguez, I.; Buitrago-Garcia, D.; Simancas-Racines, D.; Zambrano-Achig, P.; Del Campo, R.; Ciapponi, A.; Sued, O.; Martinez-García, L.; Rutjes, A.W.; Low, N.; et al. False-Negative Results of Initial RT-PCR Assays for COVID-19: A Systematic Review. PLoS ONE 2020, 15, e0242958. [Google Scholar] [CrossRef]
- Lohse, S.; Pfuhl, T.; Berkó-Göttel, B.; Rissland, J.; Geißler, T.; Gärtner, B.; Becker, S.L.; Schneitler, S.; Smola, S. Pooling of Samples for Testing for SARS-CoV-2 in Asymptomatic People. Lancet Infect. Dis. 2020, 20, 1231–1232. [Google Scholar] [CrossRef]
- Agoti, C.N.; Mutunga, M.; Lambisia, A.W.; Kimani, D.; Cheruiyot, R.; Kiyuka, P.; Lewa, C.; Gicheru, E.; Tendwa, M.; Said Mohammed, K.; et al. Pooled Testing Conserves SARS-CoV-2 Laboratory Resources and Improves Test Turn-around Time: Experience on the Kenyan Coast. Wellcome Open Res. 2021, 5, 186. [Google Scholar] [CrossRef]
- Pikovski, A.; Bentele, K. Pooling of Coronavirus Tests under Unknown Prevalence. Epidemiol. Infect. 2020, 148, e183. [Google Scholar] [CrossRef]
- Yelin, I.; Aharony, N.; Tamar, E.S.; Argoetti, A.; Messer, E.; Berenbaum, D.; Shafran, E.; Kuzli, A.; Gandali, N.; Shkedi, O.; et al. Evaluation of COVID-19 RT-QPCR Test in Multi Sample Pools. Clin. Infect. Dis. 2020, 71, 2073–2078. [Google Scholar] [CrossRef] [PubMed]
- National Center for Immunization and Respiratory Diseases (U.S.); Division of Viral Diseases. Evaluating and Testing Persons for Coronavirus Disease 2019 (COVID-19); U. S. Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. Available online: https://stacks.cdc.gov/view/cdc/87523 (accessed on 24 November 2021).
- D’Arienzo, M.; Coniglio, A. Assessment of the SARS-CoV-2 Basic Reproduction Number, R0, Based on the Early Phase of COVID-19 Outbreak in Italy. Biosaf. Health 2020, 2, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Grohmann, L.; Barbante, A.; Eriksson, R.; Gatto, F.; Georgieva, T.; Huber, I.; Hulin, J.; Köppel, R.; Marchesi, U.; Marmin, L.; et al. Guidance Document on Multiplex Real-Time PCR Methods; European Comission–Joint Research Center: Brussels, Belgium, 2021; Available online: https://data.europa.eu/doi/10.2760/243914 (accessed on 5 January 2022).
- Gul, I.; Liu, C.; Yuan, X.; Du, Z.; Zhai, S.; Lei, Z.; Chen, Q.; Raheem, M.A.; He, Q.; Hu, Q.; et al. Current and Perspective Sensing Methods for Monkeypox Virus. Bioengineering 2022, 9, 571. [Google Scholar] [CrossRef]
- Chen, Q.; Gul, I.; Liu, C.; Lei, Z.; Li, X.; Raheem, M.A.; He, Q.; Haihui, Z.; Leeansyah, E.; Zhang, C.Y.; et al. CRISPR–Cas12-based Field-deployable System for Rapid Detection of Synthetic DNA Sequence of the Monkeypox Virus Genome. J. Med. Virol. 2023, 95, e28385. [Google Scholar] [CrossRef]
Fluorophore | Excitation Max (nm) | Emission Max (nm) | Extinction Coefficient * | Color ** | Quencher |
---|---|---|---|---|---|
FAM | 495 | 520 | 75,850 | Yellow-Green | BHQ-1 |
HEX | 535 | 556 | 98,000 | Yellow | TAMRA |
ROX | 575 | 602 | 82,000 | Orange-Red | BHQ-2 |
Gene Target | Fluorophore 5′ | Sequence (5′ → 3′) | Quencher 3′ |
---|---|---|---|
RP | HEX | TTC TGA CCT GAA GGC TCT GCG CG | TAMRA |
N1 | FAM | ACC CCG CAT TAC GTT TGG TGG ACC | BHQ-1 |
N2 | ROX | ACA ATT TGC CCC CAG CGC TTC AG | BHQ-2 |
RP 1 | N1 | N2 | ||||
---|---|---|---|---|---|---|
Probe | Standard | Multiplex | Standard | Simplex | Standard | Simplex |
Efficiency | 109 ± 2% | 126 ± 14% | 117 ± 3% | 95 ± 4% | 114 ± 3% | 84 ± 2% |
Detection limit (Cp < 35) | DF 2 625 | DF 2 625 | ≈6.4 cp/µL 3 DF 2 15,625 | ≈6.4 cp/µL 3 DF 2 15,625 | ≈6.4 cp/µL 3 DF 2 15,625 | ≈6.4 cp/µL 3 DF 2 15,625 |
[RNA] (cp/µL) | Dilutions Performed in RNA Matrix * | Dilutions Performed in Water | ||||||
---|---|---|---|---|---|---|---|---|
Triplex (RP + N1 + N2) | Duplex (N1 + N2) | Duplex (RP + N1) | Duplex (RP + N2) | Triplex (RP + N1 + N2) | Duplex (N1 + N2) | Duplex (RP + N1) | Duplex (RP + N2) | |
20,000 | ||||||||
4000 | ||||||||
800 | ||||||||
160 | ||||||||
32 | ||||||||
6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miguel, F.; Baleizão, A.R.; Gomes, A.G.; Caria, H.; Serralha, F.N.; Justino, M.C. Strategies for Increasing the Throughput of Genetic Screening: Lessons Learned from the COVID-19 Pandemic within a University Community. BioTech 2024, 13, 26. https://doi.org/10.3390/biotech13030026
Miguel F, Baleizão AR, Gomes AG, Caria H, Serralha FN, Justino MC. Strategies for Increasing the Throughput of Genetic Screening: Lessons Learned from the COVID-19 Pandemic within a University Community. BioTech. 2024; 13(3):26. https://doi.org/10.3390/biotech13030026
Chicago/Turabian StyleMiguel, Fernanda, A. Raquel Baleizão, A. Gabriela Gomes, Helena Caria, Fátima N. Serralha, and Marta C. Justino. 2024. "Strategies for Increasing the Throughput of Genetic Screening: Lessons Learned from the COVID-19 Pandemic within a University Community" BioTech 13, no. 3: 26. https://doi.org/10.3390/biotech13030026
APA StyleMiguel, F., Baleizão, A. R., Gomes, A. G., Caria, H., Serralha, F. N., & Justino, M. C. (2024). Strategies for Increasing the Throughput of Genetic Screening: Lessons Learned from the COVID-19 Pandemic within a University Community. BioTech, 13(3), 26. https://doi.org/10.3390/biotech13030026