Translocation of Insecticidal Bt Protein in Transgrafted Plants
Abstract
1. Introduction
2. Materials and Methods
2.1. Generation of Plasmids and Transgenic Plants
2.2. Experimental Transgrafting Procedures
2.3. Leaf-Specific Cry1Ab Transcript Analysis
2.4. Cry1Ab Protein Immunoprecipitation
2.5. Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS) Analysis
2.5.1. Protein Digestion and Peptide Preparation
2.5.2. LC–MS/MS Analysis and Identification of Peptide Sequences
3. Results
3.1. Generation of Cry1Ab-Expressing Transgenic Tobacco
3.2. Cry1Ab Protein Detection in Transgrafted Non-GM Scion Leaves
3.3. Cry1Ab Protein Detection in Transgrafted Scion Seeds
3.4. Proteomic Analysis of Cry1Ab Peptides in Transgenic and Transgrafted Plants
3.5. Co-Identification of Cry1Ab-Interacting Tobacco Proteins
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACN | acetonitrile |
Bt protein | Bacillus thuringiensis crystal protein |
GFP | green fluorescent protein |
GM | genetically modified |
LC–MS/MS | liquid chromatography–tandem mass spectrometry |
LUC | luciferase |
NEP | newly expressed protein |
WT | wild-type |
References
- Albacete, A.; Martínez-Andújar, C.; Martínez-Pérez, A.; Thompson, A.J.; Dodd, I.C.; Pérez-Alfocea, F. Unravelling rootstock × scion interactions to improve food security. J. Exp. Bot. 2015, 66, 2211–2226. [Google Scholar] [CrossRef]
- Kergunteuil, A.; Bakhtiari, M.; Formenti, L.; Xiao, Z.; Defossez, E.; Rasmann, S. Biological control beneath the feet: A review of crop protection against insect root Herbivores. Insects 2016, 7, 70. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, K.; Jiang, Y.; Guo, Y.; Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 2012, 487, 362–365. [Google Scholar] [CrossRef]
- Vitale, J.D.; Vognan, G.; Ouattarra, M.; Traore, O. The commercial application of GMO crops in Africa: Burkina Faso’s decade of experience with Bt cotton. AgBioForum 2010, 13, 320–332. [Google Scholar]
- Bawa, A.S.; Anilakumar, K.R. Genetically modified foods: Safety, risks and public concerns-a review. J. Food Sci. Technol. 2013, 50, 1035–1046. [Google Scholar] [CrossRef]
- Miyahara, T.; Ohkubo, H.; Umeyama, Y.; Oguchi, T.; Ogawa, T.; Ohta, D.; Mochizuki, T.; Kodama, H. Discontinuous translocation of a luciferase protein beyond graft junction in tobacco. Food Saf. 2024, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Kato, K.; Asuka, H.; Sugioka, Y.; Mochizuki, T.; Fukuda, H.; Nishiuchi, T.; Miyahara, T.; Kodama, H.; Ohta, D. Translocation of green fluorescent protein in homo- and hetero-transgrafted plants. Plant Biotechnol. 2024, 41, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Paultre, D.S.G.; Gustin, M.P.; Molnar, A.; Oparka, K.J. Lost in transit: Long-distance trafficking and phloem unloading of protein signals in Arabidopsis homografts. Plant Cell 2016, 28, 2016–2025. [Google Scholar] [CrossRef]
- Rui, Y.; Zhu, B.; Luo, Y. Long distance transportation of Bt-toxin through xylem sap in Bt cotton (Gossypium). Chinese Bull. Bot. 2005, 22, 320–324. [Google Scholar]
- Wang, L.; Yang, M.; Akinnagbe, A.; Liang, H.; Wang, J.; Ewald, D. Bacillus thuringiensis protein transfer between rootstock and scion of grafted poplar. Plant Biol. 2012, 14, 745–750. [Google Scholar] [CrossRef]
- Chen, P.F.; Ren, Y.C.; Zhang, J.; Wang, J.M.; Yang, M.S. Expression and transportation of Bt toxic protein in 8-year-old grafted transgenic poplar. Sci. Silvae Sin. 2016, 52, 46–52. [Google Scholar]
- Han, X. A review of the food and feed safety of the Cry1Ab protein. ILSI Res. Found. 2016, 1–13. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, M.; Tan, M.; Gao, J.; Shen, Z. Expression of Cry1Ab and Cry2Ab by a polycistronic transgene with a self-cleavage peptide in rice. PLoS ONE 2014, 9, e110006. [Google Scholar] [CrossRef]
- Horsch, R.B.; Fry, J.E.; Hoffmann, N.L.; Wallroth, M.; Eichholtz, D.; Fraley, R.T. A simple and general method for transferring genes into plants. Science 1985, 227, 1229–1231. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.; Johnstone, C.; Thompson, C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991, 19, 1349. [Google Scholar] [CrossRef] [PubMed]
- Kodama, H.; Umeyama, Y.; Miyahara, T.; Oguchi, T.; Tsujimoto, T.; Ozeki, Y.; Ogawa, T.; Yamaguchi, Y.; Ohta, D. Omics profiles of non-transgenic scion grafted on transgenic RdDM rootstock. Food Saf. 2022, 10, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Hraška, M.; Rakouský, S.; Čurn, V. Tracking of the CaMV-35S promoter performance in GFP transgenic tobacco, with a special emphasis on flowers and reproductive organs, confirmed its predominant activity in vascular tissues. Plant Cell Tissue Organ Cult. 2008, 94, 239–251. [Google Scholar] [CrossRef]
- Steiner, H.Y.; Halpin, C.; Jez, J.M.; Kough, J.; Parrott, W.; Underhill, L.; Weber, N.; Hannah, L.C. Editor’s choice: Evaluating the potential for adverse interactions within genetically engineered breeding stacks. Plant Physiol. 2013, 161, 1587–1594. [Google Scholar] [CrossRef]
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberón, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 2011, 41, 423–431. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Abidallha, E.H.; Hu, D.; Li, Y.; Zhang, X.; Chen, D. Planting density and leaf-square regulation affected square size and number contributing to altered insecticidal protein content in Bt cotton. Field Crops Res. 2017, 205, 14–22. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Zhou, M.; Cai, Z.; Tambel, L.I.M.; Zhang, X.; Chen, Y.; Chen, D. Nitrogen deficit decreases seed Cry1Ac endotoxin expression in Bt transgenic cotton. Plant Physiol. Biochem. 2019, 141, 114–121. [Google Scholar] [CrossRef]
- Liu, Z.; Eltayib, H.M.A.A.; Wu, H.; Zhou, M.; Zhang, X.; Chen, Y.; Chen, D. Bt insecticidal efficacy variation and agronomic regulation in Bt cotton. J. Cotton Res. 2019, 2, 23. [Google Scholar] [CrossRef]
- Oparka, K.J.; Roberts, A.G.; Boevink, P.; Santa Cruz, S.; Roberts, I.; Pradel, K.S.; Imlau, A.; Kotlizky, G.; Sauer, N.; Epel, B. Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 1999, 97, 743–754. [Google Scholar] [CrossRef]
- Crawford, K.M.; Zambryski, P.C. Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr. Biol. 2000, 10, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Corbesier, L.; Vincent, C.; Jang, S.; Fornara, F.; Fan, Q.; Searle, I.; Giakountis, A.; Farrona, S.; Gissot, L.; Turnbull, C.; et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 2007, 316, 1030–1033. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, L.; Shen, L.; Yu, H. NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis. Nat. Plants 2016, 2, 16075. [Google Scholar] [CrossRef]
- Haroldsen, V.M.; Chi-Ham, C.L.; Bennett, A.B. Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks. J. Biotechnol. 2012, 161, 349–353. [Google Scholar] [CrossRef]
- Haroldsen, V.M.; Paulino, G.; Chi-ham, C.; Bennett, A.B. Regulatory status of transgrafted plants is unclear. Calif. Agric. 2012, 66, 2. [Google Scholar] [CrossRef]
Line | Part | Peptides a | Coverage (%) | −10logP b |
---|---|---|---|---|
WT1 c | Leaves | n.d. d | – | – |
WT2 | Seeds | n.d. | – | – |
WT3 | Seeds | n.d. | – | – |
Bt39 | Seeds | 1 | 2 | 50.02 |
WT/Bt39-1 | Seeds | n.d. | – | – |
WT/Bt39-2 | Seeds | n.d. | – | – |
WT/Bt39-3 | Seeds | n.d. | – | – |
Bt44-1 | Leaves | 3 | 5 | 56.33 |
Bt44-2 | Leaves | 13 | 24 | 106.20 |
Bt44-3 | Leaves | 11 | 21 | 84.91 |
Bt44-4 | Leaves | 8 | 15 | 78.96 |
Bt44 | Seeds | 4 | 9 | 43.49 |
WT/Bt44-1 | Leaves | 3 | 4 | 47.16 |
WT/Bt44-2 | Leaves | 6 | 9 | 58.19 |
WT/Bt44-3 | Leaves | 4 | 6 | 47.43 |
WT/Bt44-4 | Leaves | n.d. | – | – |
WT/Bt44-5 | Leaves | 3 | 4 | 40.14 |
WT/Bt44-6 | Seeds | n.d. | – | – |
WT/Bt44-7 | Seeds | n.d. | – | – |
WT/Bt44-8 | Seeds | n.d. | – | – |
Uniprot Accession | Description |
---|---|
A0A1S3YM01 | 40S ribosomal protein S18 |
A0A1S4B7N5 | Catechol oxidase (EC 1.10.3.1) |
A0A1S4CEW8 | Chlorophyll a-b binding protein, chloroplastic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ando, A.; Ohkubo, H.; Maki, H.; Nishiuchi, T.; Ogawa, T.; Mochizuki, T.; Ohta, D.; Kodama, H.; Miyahara, T. Translocation of Insecticidal Bt Protein in Transgrafted Plants. BioTech 2025, 14, 64. https://doi.org/10.3390/biotech14030064
Ando A, Ohkubo H, Maki H, Nishiuchi T, Ogawa T, Mochizuki T, Ohta D, Kodama H, Miyahara T. Translocation of Insecticidal Bt Protein in Transgrafted Plants. BioTech. 2025; 14(3):64. https://doi.org/10.3390/biotech14030064
Chicago/Turabian StyleAndo, Arisa, Hitomi Ohkubo, Hisae Maki, Takumi Nishiuchi, Takumi Ogawa, Tomofumi Mochizuki, Daisaku Ohta, Hiroaki Kodama, and Taira Miyahara. 2025. "Translocation of Insecticidal Bt Protein in Transgrafted Plants" BioTech 14, no. 3: 64. https://doi.org/10.3390/biotech14030064
APA StyleAndo, A., Ohkubo, H., Maki, H., Nishiuchi, T., Ogawa, T., Mochizuki, T., Ohta, D., Kodama, H., & Miyahara, T. (2025). Translocation of Insecticidal Bt Protein in Transgrafted Plants. BioTech, 14(3), 64. https://doi.org/10.3390/biotech14030064