Changes in Microbial Communities in Industrial Anaerobic Digestion of Dairy Manure Caused by Caldicellulosiruptor Pretreatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Cultivation of Caldicellulosiruptor spp. and Inoculum Preparation
2.3. Sample Collection and Storage
2.4. Analyses of Samples
2.5. DNA Extraction and Sequencing
2.6. DNA Sequence Processing
2.7. Microbial Correlation Testing
2.8. Microbial Co-Occurrence Networks
3. Results and Discussion
3.1. Community Compositions
3.1.1. Reception Pit (RP) Community
3.1.2. Continuously Stirred Tank Reactor (CSTR) Community
3.1.3. Extremophilic Biological Process (EBP) Tank Community
3.1.4. Induced Bed Reactor (IBR) Community
3.2. Co-Occurrence Networks
3.2.1. Reception Pit (RP) Network
3.2.2. Continuously Stirred Tank Reactor (CSTR) Network
3.2.3. Extremophilic Biological Process (EBP) Tank Network
3.2.4. Induced Bed Reactor (IBR) Network
3.2.5. Comparison of Networks
3.3. Community Dissimilarity and Relationship with Environmental Variables
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RP | Reception Pit |
CSTR | Continuously Stirred Tank Reactor |
EBP | Extremophilic Biological Process |
IBR | Induced Bed Reactor |
AD | Anaerobic Digestion |
VFA | Volatile Fatty Acid |
VFAA | Volatile Fatty Acid Anion |
COD | Chemical Oxygen Demand |
TDS | Total Dissolved Solids |
RA | Relative Abundance |
HRT | Hydraulic Retention Time |
References
- Kurade, M.B.; Saha, S.; Salama, E.-S.; Patil, S.M.; Govindwar, S.P.; Jeon, B.-H. Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresour. Technol. 2019, 272, 351–359. [Google Scholar] [CrossRef]
- Jiang, Y.; Banks, C.; Zhang, Y.; Heaven, S.; Longhurst, P. Quantifying the percentage of methane formation via acetoclastic and syntrophic acetate oxidation pathways in anaerobic digesters. Waste Manag. 2018, 71, 749–756. [Google Scholar] [CrossRef]
- Stams, A.J.M.; Plugge, C.M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 2009, 7, 568–577. [Google Scholar] [CrossRef]
- Junicke, H.; Feldman, H.; Van Loosdrecht, M.C.M.; Kleerebezem, R. Limitation of syntrophic coculture growth by the acetogen. Biotechnol. Bioeng. 2016, 113, 560–567. [Google Scholar] [CrossRef]
- Demirel, B.; Scherer, P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Biotechnol. 2008, 7, 173–190. [Google Scholar] [CrossRef]
- Hansen, L.D. Thermodynamic method for analyzing and optimizing pretreatment/anaerobic digestion systems. Biofuel Res. J. 2023, 10, 1816–1829. [Google Scholar] [CrossRef]
- Bueno de Mesquita, C.P.; Wu, D.; Tringe, S.G. Methyl-Based Methanogenesis: An Ecological and Genomic Review. Microbiol. Mol. Biol. Rev. 2023, 87, e00024-22. [Google Scholar] [CrossRef]
- Glass, J.B.; Whitman, W.B. Methanogenesis. In Encyclopedia of Astrobiology; Gargaud, M., Irvine, W.M., Amils, R., Cleaves, H.J., Pinti, D., Cernicharo Quintanilla, J., Viso, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–6. ISBN 978-3-642-27833-4. [Google Scholar]
- Harirchi, S.; Wainaina, S.; Sar, T.; Nojoumi, S.A.; Parchami, M.; Parchami, M.; Varjani, S.; Khanal, S.K.; Wong, J.; Awasthi, M.K.; et al. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered 2022, 13, 6521–6557. [Google Scholar] [CrossRef]
- De Vrieze, J.; Hennebel, T.; Boon, N.; Verstraete, W. Methanosarcina: The rediscovered methanogen for heavy duty biomethanation. Bioresour. Technol. 2012, 112, 1–9. [Google Scholar] [CrossRef]
- Atasoy, M.; Cetecioglu, Z. The effects of pH on the production of volatile fatty acids and microbial dynamics in long-term reactor operation. J. Environ. Manag. 2022, 319, 115700. [Google Scholar] [CrossRef]
- Franke-Whittle, I.H.; Walter, A.; Ebner, C.; Insam, H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. 2014, 34, 2080–2089. [Google Scholar] [CrossRef] [PubMed]
- Atelge, M.R.; Atabani, A.E.; Banu, J.R.; Krisa, D.; Kaya, M.; Eskicioglu, C.; Kumar, G.; Lee, C.; Yildiz, Y.Ş.; Unalan, S.; et al. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel 2020, 270, 117494. [Google Scholar] [CrossRef]
- Bandgar, P.S.; Jain, S.; Panwar, N.L. A comprehensive review on optimization of anaerobic digestion technologies for lignocellulosic biomass available in India. Biomass Bioenergy 2022, 161, 106479. [Google Scholar] [CrossRef]
- Nguyen, V.K.; Chaudhary, D.K.; Dahal, R.H.; Trinh, N.H.; Kim, J.; Chang, S.W.; Hong, Y.; Duc La, D.; Nguyen, X.C.; Ngo, H.H.; et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Amin, F.R.; Khalid, H.; Zhang, H.; Rahman, S.U.; Zhang, R.; Liu, G.; Chen, C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017, 7, 72. [Google Scholar] [CrossRef]
- Pasalari, H.; Gharibi, H.; Darvishali, S.; Farzadkia, M. The effects of different pretreatment technologies on microbial community in anaerobic digestion process: A systematic review. J. Environ. Health Sci. Eng. 2024, 22, 439–453. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, X.; Wang, L.; Guo, K.; Cao, S.; Zhou, Y. Metagenomic insights into the effect of thermal hydrolysis pre-treatment on microbial community of an anaerobic digestion system. Sci. Total Environ. 2021, 791, 148096. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, G.; Zhang, H.; Qiao, F.; Fan, J.; Bai, D.; Xu, G. Effect of Thermal Hydrolysis Pretreatment on Anaerobic Digestion of Protein-Rich Biowaste: Process Performance and Microbial Community Structures Shift. Front. Environ. Sci. 2022, 9, 805078. [Google Scholar] [CrossRef]
- Hansen, J.C.; Aanderud, Z.T.; Reid, L.E.; Bateman, C.; Hansen, C.L.; Rogers, L.S.; Hansen, L.D. Enhancing waste degradation and biogas production by pre-digestion with a hyperthermophilic anaerobic bacterium. Biofuel Res. J. 2021, 8, 1433–1443. [Google Scholar] [CrossRef]
- Straub, C.T.; Khatibi, P.A.; Otten, J.K.; Adams, M.W.W.; Kelly, R.M. Lignocellulose solubilization and conversion by extremely thermophilic Caldicellulosiruptor bescii improves by maintaining metabolic activity. Biotechnol. Bioeng. 2019, 116, 1901–1908. [Google Scholar] [CrossRef]
- Brunecky, R.; Donohoe, B.S.; Yarbrough, J.M.; Mittal, A.; Scott, B.R.; Ding, H.; Taylor, L.E., II; Russell, J.F.; Chung, D.; Westpheling, J.; et al. The Multi Domain Caldicellulosiruptor bescii CelA Cellulase Excels at the Hydrolysis of Crystalline Cellulose. Sci. Rep. 2017, 7, 9622. [Google Scholar] [CrossRef]
- Bing, R.G.; Willard, D.J.; Crosby, J.R.; Adams, M.W.W.; Kelly, R.M. Whither the genus Caldicellulosiruptor and the order Thermoanaerobacterales: Phylogeny, taxonomy, ecology, and phenotype. Front. Microbiol. 2023, 14, 1212538. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Qiu, Q.; Yu, Y.; Sun, X.; Tian, K.; Chang, M.; Wang, Y.; Zhang, F.; Huo, H. Bacterial transformation of lignin: Key enzymes and high-value products. Biotechnol. Biofuels Bioprod. 2024, 17, 2. [Google Scholar] [CrossRef] [PubMed]
- Dustin, J.S.; Hansen, C.L. Completely stirred tank reactor behavior in an unmixed anaerobic digester: The induced bed reactor. Water Environ. Res. 2012, 84, 711–718. [Google Scholar] [CrossRef]
- Lee, E.; Min, K.J.; Park, K.Y. Changes in anaerobic digestion performance and microbial community by increasing SRT through sludge recycling in food waste leachate treatment. Sci. Rep. 2025, 15, 19845. [Google Scholar] [CrossRef]
- Bonk, F.; Popp, D.; Weinrich, S.; Sträuber, H.; Becker, D.; Kleinsteuber, S.; Harms, H.; Centler, F. Determination of Microbial Maintenance in Acetogenesis and Methanogenesis by Experimental and Modeling Techniques. Front. Microbiol. 2019, 10, 166. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, 9490. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Hugerth, L.W.; Andersson, A.F. Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing. Front. Microbiol. 2017, 8, 1561. [Google Scholar] [CrossRef]
- Blazewicz, S.J.; Barnard, R.L.; Daly, R.A.; Firestone, M.K. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. 2013, 7, 2061–2068. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. vegan: Community Ecology Package 2025. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 8 July 2025).
- Griffith, D.M.; Veech, J.A.; Marsh, C.J. cooccur: Probabilistic Species Co-Occurrence Analysis in R. J. Stat. Soft. 2016, 69, 1–17. [Google Scholar] [CrossRef]
- Fruchterman, T.M.J.; Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exp. 1991, 21, 1129–1164. [Google Scholar] [CrossRef]
- Pedersen, T.L. ggraph: An Implementation of Grammar of Graphics for Graphs and Networks; CRAN: Windhoek, Namibia, 2024. [Google Scholar]
- Pyzik, A.; Ciezkowska, M.; Krawczyk, P.S.; Sobczak, A.; Drewniak, L.; Dziembowski, A.; Lipinski, L. Comparative analysis of deep sequenced methanogenic communities: Identification of microorganisms responsible for methane production. Microb. Cell Factories 2018, 17, 197. [Google Scholar] [CrossRef]
- Conklin, A.; Stensel, H.D.; Ferguson, J. Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environ. Res. 2006, 78, 486–496. [Google Scholar] [CrossRef]
- St-Pierre, B.; Wright, A.-D.G. Metagenomic analysis of methanogen populations in three full-scale mesophilic anaerobic manure digesters operated on dairy farms in Vermont, USA. Bioresour. Technol. 2013, 138, 277–284. [Google Scholar] [CrossRef]
- Yadav, S.; Koenen, M.; Bale, N.J.; Reitsma, W.; Engelmann, J.C.; Stefanova, K.; Damsté, J.S.S.; Villanueva, L. Organic matter degradation in the deep, sulfidic waters of the Black Sea: Insights into the ecophysiology of novel anaerobic bacteria. Microbiome 2024, 12, 98. [Google Scholar] [CrossRef]
- Huber, R.; Hannig, M. Thermotogales. In The Prokaryotes: Volume 7: Proteobacteria: Delta, Epsilon Subclass; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 899–922. ISBN 978-0-387-30747-3. [Google Scholar]
- Johnson, M.R.; Conners, S.B.; Montero, C.I.; Chou, C.J.; Shockley, K.R.; Kelly, R.M. The Thermotoga maritima Phenotype Is Impacted by Syntrophic Interaction with Methanococcus jannaschii in Hyperthermophilic Coculture. Appl. Environ. Microbiol. 2006, 72, 811–818. [Google Scholar] [CrossRef]
- Zinder, S.H.; Anguish, T.; Cardwell, S.C. Effects of Temperature on Methanogenesis in a Thermophilic (58 °C) Anaerobic Digestor. Appl. Environ. Microbiol. 1984, 47, 808–813. [Google Scholar] [CrossRef]
- Mladenovska, Z.; Ahring, B.K. Growth kinetics of thermophilic Methanosarcina spp. isolated from full-scale biogas plants treating animal manures. FEMS Microbiol. Ecol. 2000, 31, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Hatori, S.; Wang, Y.; Li, Y.-Y.; Kubota, K. Uncovering Viable Microbiome in Anaerobic Sludge Digesters by Propidium Monoazide (PMA)-PCR. Microb. Ecol. 2020, 79, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Kläring, K.; Just, S.; Lagkouvardos, I.; Hanske, L.; Haller, D.; Blaut, M.; Wenning, M.; Clavel, T. Murimonas intestini gen. nov., sp. nov., an acetate-producing bacterium of the family Lachnospiraceae isolated from the mouse gut. Int. J. Syst. Evol. Microbiol. 2015, 65, 870–878. [Google Scholar] [CrossRef]
- McInerney, M.J.; Bryant, M.P.; Hespell, R.B.; Costerton, J.W. Syntrophomonas wolfei gen. nov. sp. nov., an Anaerobic, Syntrophic, Fatty Acid-Oxidizing Bacterium. Appl. Environ. Microbiol. 1981, 41, 1029–1039. [Google Scholar] [CrossRef]
- Yokoyama, H.; Wagner, I.D.; Wiegel, J. Caldicoprobacter oshimai gen. nov., sp. nov., an anaerobic, xylanolytic, extremely thermophilic bacterium isolated from sheep faeces, and proposal of Caldicoprobacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. 2010, 60, 67–71. [Google Scholar] [CrossRef]
- Shaw, A.J.; Hogsett, D.A.; Lynd, L.R. Identification of the [FeFe]-Hydrogenase Responsible for Hydrogen Generation in Thermoanaerobacterium saccharolyticum and Demonstration of Increased Ethanol Yield via Hydrogenase Knockout. J. Bacteriol. 2009, 191, 6457–6464. [Google Scholar] [CrossRef]
- Zavarzina, D.G.; Tourova, T.P.; Kuznetsov, B.B.; Bonch-Osmolovskaya, E.A.; Slobodkin, A.I. Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int. J. Syst. Evol. Microbiol. 2002, 52, 1737–1743. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, C. Thermophilic-mesophilic temperature phase anaerobic co-digestion compared with single phase co-digestion of sewage sludge and food waste. Sci. Rep. 2024, 14, 11967. [Google Scholar] [CrossRef]
- Gallert, C.; Winter, J. Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: Effect of ammonia on glucose degradation and methane production. Appl. Microbiol. Biotechnol. 1997, 48, 405–410. [Google Scholar] [CrossRef]
- Sasaki, K.; Morita, M.; Sasaki, D.; Nagaoka, J.; Matsumoto, N.; Ohmura, N.; Shinozaki, H. Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. J. Biosci. Bioeng. 2011, 112, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Hagen, L.H.; Frank, J.A.; Zamanzadeh, M.; Eijsink, V.G.H.; Pope, P.B.; Horn, S.J.; Arntzen, M.Ø. Quantitative Metaproteomics Highlight the Metabolic Contributions of Uncultured Phylotypes in a Thermophilic Anaerobic Digester. Appl. Environ. Microbiol. 2016, 83, e01955-16. [Google Scholar] [CrossRef]
- Dong, N.; Bu, F.; Zhou, Q.; Khanal, S.K.; Xie, L. Performance and microbial community of hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic conditions. Bioresour. Technol. 2018, 266, 454–462. [Google Scholar] [CrossRef]
- Maus, I.; Cibis, K.G.; Bremges, A.; Stolze, Y.; Wibberg, D.; Tomazetto, G.; Blom, J.; Sczyrba, A.; König, H.; Pühler, A.; et al. Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment. J. Biotechnol. 2016, 232, 50–60. [Google Scholar] [CrossRef]
- Miller, T.L.; Wolin, M.J. Methanosphaera stadtmaniae gen. nov., sp. nov.: A species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 1985, 141, 116–122. [Google Scholar] [CrossRef]
Phylum | RP 1 Tank, n = 10 | EBP 4 Tanks, n = 37 | CSTR 2 Tanks, n = 23 | IBR 3 Tanks, n = 33 |
---|---|---|---|---|
Firmicutes | 66.8 ± 6.5% | 72.9 ± 1.1% | 72.0 ± 0.8% | 70.3 ± 0.9% |
Bacteroidota | 11.6 ± 1.2% | 10.4 ± 1.6% | 16.9 ± 1.0% | 20.8 ± 1.2% |
Actinobacteriota | 9.7 ± 1.2% | 10.5 ± 0.9% | 5.8 ± 0.3% | 4.3 ± 0.3% |
Proteobacteria | 9.6 ± 4.6% | 2.6 ± 0.2% | 2.5 ± 0.1% | 1.8 ± 0.2% |
Euryarchaeota | 1.4 ± 0.2% | 2.2 ± 0.2% | 1.3 ± 0.1% | 1.3 ± 0.1% |
Other | 0.8 ± 0.4% | 1.5 ± 0.4% | 1.5 ± 0.1% | 1.5 ± 0.1% |
Methanogen | RP 1 Tank, n = 10 | EBP 4 Tanks, n = 37 | CSTR 2 Tanks, n = 23 | IBR 3 Tanks, n = 33 |
---|---|---|---|---|
Methanobrevibacter spp. | 63.7 ± 2.3% | 56.3 ± 2.7% | 47.8 ± 3.5% | 48.7 ± 2.35% |
Members of Methanobacteriaceae | 33.5 ± 2.0% | 33.5 ± 1.7% | 19.9 ± 1.2% | 26.5 ± 1.74% |
Methanosarcina spp. | 0.3 ± 0.2% | 1.2 ± 0.4% | 25.6 ± 4.0% | 16.8 ± 2.49% |
Methanothermobacter spp. | ND 1 | 6.2 ± 1.5% | 0.1 ± 0.1% | 1.6 ± 0.57% |
Methanobacterium spp. | ND | ND | 5.5 ± 0.9% | 2.4 ± 0.5% |
Methanosphaera spp. | 2.4 ± 0.7% | 2.0 ± 0.3% | 0.5 ± 0.2% | 1.4 ± 0.4% |
Members of Candidatus Methanoplasma | 0.1 ± 0.1% | 0.4 ± 0.2% | ND | 1.0 ± 0.4% |
Parameter | RP | EBP | CSTR | IBR |
---|---|---|---|---|
Components | 7 | 1 | 3 | 1 |
Modularity | 0.74 | 0.51 | 0.57 | 0.44 |
Mean Connectivity | 2.70 ± 0.21 | 16.58 ± 1.00 | 3.93 ± 0.32 | 11.70 ± 0.94 |
Mean Clustering | 0.44 ± 0.05 | 0.60 ± 0.02 | 0.38 ± 0.04 | 0.60 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, J.; Nipko, M.; Butterfield, S.; Aanderud, Z. Changes in Microbial Communities in Industrial Anaerobic Digestion of Dairy Manure Caused by Caldicellulosiruptor Pretreatment. BioTech 2025, 14, 67. https://doi.org/10.3390/biotech14030067
Young J, Nipko M, Butterfield S, Aanderud Z. Changes in Microbial Communities in Industrial Anaerobic Digestion of Dairy Manure Caused by Caldicellulosiruptor Pretreatment. BioTech. 2025; 14(3):67. https://doi.org/10.3390/biotech14030067
Chicago/Turabian StyleYoung, Jakob, Maliea Nipko, Spencer Butterfield, and Zachary Aanderud. 2025. "Changes in Microbial Communities in Industrial Anaerobic Digestion of Dairy Manure Caused by Caldicellulosiruptor Pretreatment" BioTech 14, no. 3: 67. https://doi.org/10.3390/biotech14030067
APA StyleYoung, J., Nipko, M., Butterfield, S., & Aanderud, Z. (2025). Changes in Microbial Communities in Industrial Anaerobic Digestion of Dairy Manure Caused by Caldicellulosiruptor Pretreatment. BioTech, 14(3), 67. https://doi.org/10.3390/biotech14030067