IgM-Related Immunoglobulin Light Chain (AL) Amyloidosis
Abstract
:1. Introduction
2. Detection and Typing of Amyloidosis
3. Diagnostic Evaluation of IgM-Related Amyloidosis
4. Clinical Features
5. Treatment Options
6. Prognosis
7. Conclusions
8. Disclosures
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Derman, B.; Castillo, J.J.; Sarosiek, S.; Beksac, M. When a Monoclonal Gammopathy Is Not Multiple Myeloma. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Merlini, G.; Bellotti, V. Molecular mechanisms of amyloidosis. N. Engl. J. Med. 2003, 349, 583–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muchtar, E.; Dispenzieri, A.; Magen, H.; Grogan, M.; Mauermann, M.; McPhail, E.D.; Kurtin, P.J.; Leung, N.; Buadi, F.K.; Dingli, D.; et al. Systemic amyloidosis from A (AA) to T (ATTR): A review. J. Intern. Med. 2021, 289, 268–292. [Google Scholar] [CrossRef]
- Gertz, M.A.; Buadi, F.K.; Hayman, S.R. IgM amyloidosis: Clinical features in therapeutic outcomes. Clin. Lymphoma Myeloma Leuk. 2011, 11, 146–148. [Google Scholar] [CrossRef]
- Gertz, M.A.; Kyle, R.A.; Noel, P. Primary systemic amyloidosis: A rare complication of immunoglobulin M monoclonal gammopathies and Waldenstrom’s macroglobulinemia. J. Clin. Oncol. 1993, 11, 914–920. [Google Scholar] [CrossRef]
- Palladini, G.; Russo, P.; Bosoni, T.; Sarais, G.; Lavatelli, F.; Foli, A.; Bragotti, L.Z.; Perfetti, V.; Obici, L.; Bergesio, F.; et al. AL amyloidosis associated with IgM monoclonal protein: A distinct clinical entity. Clin. Lymphoma Myeloma 2009, 9, 80–83. [Google Scholar] [CrossRef]
- Wechalekar, A.D.; Lachmann, H.J.; Goodman, H.J.; Bradwell, A.; Hawkins, P.N.; Gillmore, J.D. AL amyloidosis associated with IgM paraproteinemia: Clinical profile and treatment outcome. Blood 2008, 112, 4009–4016. [Google Scholar] [CrossRef] [Green Version]
- Chiu, A.; Dasari, S.; Kurtin, P.J.; Theis, J.D.; Vrana, J.A.; Dispenzieri, A.; Rech, K.L.; Dao, L.N.; Howard, M.T.; Grogan, M.; et al. Bone marrow amyloid: A comprehensive analysis of 1,469 samples, including amyloid type, clinical features, and morphologic distribution. Amyloid 2022, 29, 156–164. [Google Scholar] [CrossRef]
- Kimmich, C.; Schonland, S.; Kraker, S.; Andrulis, M.; Ho, A.D.; Mayer, G.; Dittrich, T.; Hundemer, M.; Hegenbart, U. Amyloid in bone marrow smears in systemic light-chain amyloidosis. Amyloid 2017, 24, 52–59. [Google Scholar] [CrossRef]
- Folgoas, E.; Lebouvier, T.; Leclair-Visonneau, L.; Cersosimo, M.G.; Barthelaix, A.; Derkinderen, P.; Letournel, F. Diagnostic value of minor salivary glands biopsy for the detection of Lewy pathology. Neurosci. Lett. 2013, 551, 62–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westermark, P.; Stenkvist, B. A new method for the diagnosis of systemic amyloidosis. Arch. Intern. Med. 1973, 132, 522–523. [Google Scholar] [CrossRef] [PubMed]
- Gertz, M.A. Immunoglobulin light chain amyloidosis: 2022 update on diagnosis, prognosis, and treatment. Am. J. Hematol. 2022, 97, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Geller, H.I.; Singh, A.; Mirto, T.M.; Padera, R.; Mitchell, R.; Laubach, J.P.; Falk, R.H. Prevalence of Monoclonal Gammopathy in Wild-Type Transthyretin Amyloidosis. Mayo Clin. Proc. 2017, 92, 1800–1805. [Google Scholar] [CrossRef] [PubMed]
- Phull, P.; Sanchorawala, V.; Connors, L.H.; Doros, G.; Ruberg, F.L.; Berk, J.L.; Sarosiek, S. Monoclonal gammopathy of undetermined significance in systemic transthyretin amyloidosis (ATTR). Amyloid 2018, 25, 62–67. [Google Scholar] [CrossRef]
- Singh, A.; Geller, H.I.; Alexander, K.M.; Padera, R.F.; Mitchell, R.N.; Dorbala, S.; Castillo, J.J.; Falk, R.H. True, true unrelated? Coexistence of Waldenstrom macroglobulinemia and cardiac transthyretin amyloidosis. Haematologica 2018, 103, e374–e376. [Google Scholar] [CrossRef] [Green Version]
- Dasari, S.; Theis, J.D.; Vrana, J.A.; Rech, K.L.; Dao, L.N.; Howard, M.T.; Dispenzieri, A.; Gertz, M.A.; Hasadsri, L.; Highsmith, W.E.; et al. Amyloid Typing by Mass Spectrometry in Clinical Practice: A Comprehensive Review of 16,175 Samples. Mayo Clin. Proc. 2020, 95, 1852–1864. [Google Scholar] [CrossRef]
- Nasr, S.H.; Said, S.M.; Valeri, A.M.; Sethi, S.; Fidler, M.E.; Cornell, L.D.; Gertz, M.A.; Dispenzieri, A.; Buadi, F.K.; Vrana, J.A.; et al. The diagnosis and characteristics of renal heavy-chain and heavy/light-chain amyloidosis and their comparison with renal light-chain amyloidosis. Kidney Int. 2013, 83, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Vos, J.M.; Gustine, J.; Rennke, H.G.; Hunter, Z.; Manning, R.J.; Dubeau, T.E.; Meid, K.; Minnema, M.C.; Kersten, M.J.; Treon, S.P.; et al. Renal disease related to Waldenstrom macroglobulinaemia: Incidence, pathology and clinical outcomes. Br. J. Haematol. 2016, 175, 623–630. [Google Scholar] [CrossRef]
- Gertz, M.A. Immunoglobulin light chain amyloidosis: 2013 update on diagnosis, prognosis, and treatment. Am. J. Hematol. 2013, 88, 416–425. [Google Scholar] [CrossRef]
- Palladini, G.; Merlini, G. Diagnostic challenges of amyloidosis in Waldenstrom macroglobulinemia. Clin. Lymphoma Myeloma Leuk. 2013, 13, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Dispenzieri, A.; Gertz, M.A.; Kumar, S.; Wechalekar, A.; Hawkins, P.N.; Schonland, S.; Hegenbart, U.; Comenzo, R.; Kastritis, E.; et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: Impact on survival outcomes. J. Clin. Oncol. 2012, 30, 4541–4549. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, T.; Bochtler, T.; Kimmich, C.; Becker, N.; Jauch, A.; Goldschmidt, H.; Ho, A.D.; Hegenbart, U.; Schonland, S.O. AL amyloidosis patients with low amyloidogenic free light chain levels at first diagnosis have an excellent prognosis. Blood 2017, 130, 632–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milani, P.; Basset, M.; Russo, F.; Foli, A.; Merlini, G.; Palladini, G. Patients with light-chain amyloidosis and low free light-chain burden have distinct clinical features and outcome. Blood 2017, 130, 625–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, R.G.; Kyle, R.A.; Stone, M.J.; Rawstron, A.C.; Leblond, V.; Merlini, G.; Garcia-Sanz, R.; Ocio, E.M.; Morra, E.; Morel, P.; et al. Response assessment in Waldenstrom macroglobulinaemia: Update from the VIth International Workshop. Br. J. Haematol. 2013, 160, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Sachchithanantham, S.; Roussel, M.; Palladini, G.; Klersy, C.; Mahmood, S.; Venner, C.P.; Gibbs, S.; Gillmore, J.; Lachmann, H.; Hawkins, P.N.; et al. European Collaborative Study Defining Clinical Profile Outcomes and Novel Prognostic Criteria in Monoclonal Immunoglobulin M-Related Light Chain Amyloidosis. J. Clin. Oncol. 2016, 34, 2037–2045. [Google Scholar] [CrossRef]
- Sidana, S.; Dispenzieri, A.; Murray, D.L.; Go, R.S.; Buadi, F.K.; Lacy, M.Q.; Gonsalves, W.I.; Dingli, D.; Warsame, R.; Kourelis, T.; et al. Revisiting complete response in light chain amyloidosis. Leukemia 2020, 34, 1472–1475. [Google Scholar] [CrossRef]
- Zanwar, S.; Abeykoon, J.P.; Ansell, S.M.; Gertz, M.A.; Dispenzieri, A.; Muchtar, E.; Sidana, S.; Tandon, N.; Rajkumar, S.V.; Dingli, D.; et al. Primary systemic amyloidosis in patients with Waldenstrom macroglobulinemia. Leukemia 2019, 33, 790–794. [Google Scholar] [CrossRef]
- Basset, M.; Defrancesco, I.; Milani, P.; Nuvolone, M.; Rattotti, S.; Foli, A.; Mangiacavalli, S.; Varettoni, M.; Benvenuti, P.; Cartia, C.S.; et al. Nonlymphoplasmacytic lymphomas associated with light-chain amyloidosis. Blood 2020, 135, 293–296. [Google Scholar] [CrossRef]
- von Keudell, G.; Sanchorawala, V.; O’Hara, C.; Seldin, D.C.; Sloan, J.M. Simultaneous presentation of kappa-restricted chronic lymphocytic leukemia and lambda light chain AL amyloidosis. Amyloid 2014, 21, 124–127. [Google Scholar] [CrossRef]
- Bochtler, T.; Hegenbart, U.; Kunz, C.; Granzow, M.; Benner, A.; Seckinger, A.; Kimmich, C.; Goldschmidt, H.; Ho, A.D.; Hose, D.; et al. Translocation t(11;14) is associated with adverse outcome in patients with newly diagnosed AL amyloidosis when treated with bortezomib-based regimens. J. Clin. Oncol. 2015, 33, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Sidana, S.; Larson, D.P.; Greipp, P.T.; He, R.; McPhail, E.D.; Dispenzieri, A.; Murray, D.L.; Dasari, S.; Ansell, S.M.; Muchtar, E.; et al. IgM AL amyloidosis: Delineating disease biology and outcomes with clinical, genomic and bone marrow morphological features. Leukemia 2020, 34, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Sissoko, M.; Sanchorawala, V.; Seldin, D.; Sworder, B.; Angelino, K.; Broce, M.; Berk, J.; Sloan, J.M. Clinical presentation and treatment responses in IgM-related AL amyloidosis. Amyloid 2015, 22, 229–235. [Google Scholar] [CrossRef]
- Gertz, M.A.; Kyle, R.A. Amyloidosis with IgM monoclonal gammopathies. Semin. Oncol. 2003, 30, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Terrier, B.; Jaccard, A.; Harousseau, J.L.; Delarue, R.; Tournilhac, O.; Hunault-Berger, M.; Hamidou, M.; Dantal, J.; Bernard, M.; Grosbois, B.; et al. The clinical spectrum of IgM-related amyloidosis: A French nationwide retrospective study of 72 patients. Medicine 2008, 87, 99–109. [Google Scholar] [CrossRef]
- Adams, D.; Lozeron, P.; Theaudin, M.; Denier, C.; Fagniez, O.; Rerat, K.; Signate, A.; Corcia, P.; Lacroix, C. Varied patterns of inaugural light-chain (AL) amyloid polyneuropathy: A monocentric study of 24 patients. Amyloid 2011, 18 (Suppl. 1), 98–100. [Google Scholar] [CrossRef]
- Garces-Sanchez, M.; Dyck, P.J.; Kyle, R.A.; Zeldenrust, S.; Wu, Y.; Ladha, S.S.; Klein, C.J. Antibodies to myelin-associated glycoprotein (anti-Mag) in IgM amyloidosis may influence expression of neuropathy in rare patients. Muscle Nerve 2008, 37, 490–495. [Google Scholar] [CrossRef]
- Castillo, J.J.; Advani, R.H.; Branagan, A.R.; Buske, C.; Dimopoulos, M.A.; D’Sa, S.; Kersten, M.J.; Leblond, V.; Minnema, M.C.; Owen, R.G.; et al. Consensus treatment recommendations from the tenth International Workshop for Waldenstrom Macroglobulinaemia. Lancet Haematol. 2020, 7, e827–e837. [Google Scholar] [CrossRef]
- Auer, R.L.; Owen, R.G.; D’Sa, S.; Pratt, G.; Popova, B.; Hadley, L.C.; Schofield, O.; Counsell, N.; Smith, P. Subcutaneous Bortezomib, Cyclophosphamide and Rituximab (BCR) Versus Fludarabine, Cyclophosphamide and Rituximab (FCR) for Initial Therapy of WaldenstrőM’s Macroglobulinemia: A Randomised Phase II Study. Blood 2016, 128, 618. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Anagnostopoulos, A.; Kyrtsonis, M.C.; Castritis, E.; Bitsaktsis, A.; Pangalis, G.A. Treatment of relapsed or refractory Waldenstrom’s macroglobulinemia with bortezomib. Haematologica 2005, 90, 1655–1658. [Google Scholar]
- Dimopoulos, M.A.; Garcia-Sanz, R.; Gavriatopoulou, M.; Morel, P.; Kyrtsonis, M.C.; Michalis, E.; Kartasis, Z.; Leleu, X.; Palladini, G.; Tedeschi, A.; et al. Primary therapy of Waldenstrom macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BDR): Long-term results of a phase 2 study of the European Myeloma Network (EMN). Blood 2013, 122, 3276–3282. [Google Scholar] [CrossRef] [PubMed]
- Ghobrial, I.M.; Hong, F.; Padmanabhan, S.; Badros, A.; Rourke, M.; Leduc, R.; Chuma, S.; Kunsman, J.; Warren, D.; Harris, B.; et al. Phase II trial of weekly bortezomib in combination with rituximab in relapsed or relapsed and refractory Waldenstrom macroglobulinemia. J. Clin. Oncol. 2010, 28, 1422–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treon, S.P.; Hunter, Z.R.; Matous, J.; Joyce, R.M.; Mannion, B.; Advani, R.; Cook, D.; Songer, J.; Hill, J.; Kaden, B.R.; et al. Multicenter clinical trial of bortezomib in relapsed/refractory Waldenstrom’s macroglobulinemia: Results of WMCTG Trial 03-248. Clin. Cancer Res. 2007, 13, 3320–3325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treon, S.P.; Ioakimidis, L.; Soumerai, J.D.; Patterson, C.J.; Sheehy, P.; Nelson, M.; Willen, M.; Matous, J.; Mattern, J., 2nd; Diener, J.G.; et al. Primary therapy of Waldenstrom macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J. Clin. Oncol. 2009, 27, 3830–3835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palladini, G.; Foli, A.; Russo, P.; Milani, P.; Obici, L.; Lavatelli, F.; Merlini, G. Treatment of IgM-associated AL amyloidosis with the combination of rituximab, bortezomib, and dexamethasone. Clin. Lymphoma Myeloma Leuk. 2011, 11, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Laribi, K.; Poulain, S.; Willems, L.; Merabet, F.; Le Calloch, R.; Eveillard, J.R.; Herbaux, C.; Roos-Weil, D.; Chaoui, D.; Roussel, X.; et al. Bendamustine plus rituximab in newly-diagnosed Waldenstrom macroglobulinaemia patients. A study on behalf of the French Innovative Leukaemia Organization (FILO). Br. J. Haematol. 2019, 186, 146–149. [Google Scholar] [CrossRef] [Green Version]
- Paludo, J.; Abeykoon, J.P.; Shreders, A.; Ansell, S.M.; Kumar, S.; Ailawadhi, S.; King, R.L.; Koehler, A.B.; Reeder, C.B.; Buadi, F.K.; et al. Bendamustine and rituximab (BR) versus dexamethasone, rituximab, and cyclophosphamide (DRC) in patients with Waldenstrom macroglobulinemia. Ann. Hematol. 2018, 97, 1417–1425. [Google Scholar] [CrossRef]
- Tedeschi, A.; Picardi, P.; Ferrero, S.; Benevolo, G.; Margiotta Casaluci, G.; Varettoni, M.; Barate, C.; Motta, M.; Gini, G.; Goldaniga, M.C.; et al. Bendamustine and rituximab combination is safe and effective as salvage regimen in Waldenstrom macroglobulinemia. Leuk. Lymphoma 2015, 56, 2637–2642. [Google Scholar] [CrossRef]
- Manwani, R.; Sachchithanantham, S.; Mahmood, S.; Foard, D.; Sharpley, F.; Rezk, T.; Lane, T.; Quarta, C.; Fontana, M.; Lachmann, H.J.; et al. Treatment of IgM-associated immunoglobulin light-chain amyloidosis with rituximab-bendamustine. Blood 2018, 132, 761–764. [Google Scholar] [CrossRef] [Green Version]
- Sidiqi, M.H.; Buadi, F.K.; Dispenzieri, A.; Warsame, R.; Lacy, M.Q.; Dingli, D.; Leung, N.; Gonsalves, W.I.; Kapoor, P.; Kourelis, T.V.; et al. Autologous Stem Cell Transplant for IgM-Associated Amyloid Light-Chain Amyloidosis. Biol. Blood Marrow Transplant. 2019, 25, e108–e111. [Google Scholar] [CrossRef] [Green Version]
- Sanchorawala, V.; Boccadoro, M.; Gertz, M.; Hegenbart, U.; Kastritis, E.; Landau, H.; Mollee, P.; Wechalekar, A.; Palladini, G. Guidelines for high dose chemotherapy and stem cell transplantation for systemic AL amyloidosis: EHA-ISA working group guidelines. Amyloid 2022, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bayraktar, U.D.; Bashir, Q.; Qazilbash, M.; Champlin, R.E.; Ciurea, S.O. Fifty years of melphalan use in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2013, 19, 344–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, W.; Chopra, R.; McMillan, A.; Pearce, R.; Linch, D.C.; Goldstone, A.H. BEAM chemotherapy and autologous bone marrow transplantation for patients with relapsed or refractory non-Hodgkin’s lymphoma. J. Clin. Oncol. 1995, 13, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; Opat, S.; D’Sa, S.; Jurczak, W.; Lee, H.P.; Cull, G.; Owen, R.G.; Marlton, P.; Wahlin, B.E.; Garcia-Sanz, R.; et al. A Randomized Phase 3 Trial of Zanubrutinib Versus Ibrutinib in Symptomatic Waldenstrom Macroglobulinemia:The Aspen Study. Blood 2020, 18, 2038–2050. [Google Scholar] [CrossRef]
- Treon, S.P.; Gustine, J.; Meid, K.; Yang, G.; Xu, L.; Liu, X.; Demos, M.; Kofides, A.; Tsakmaklis, N.; Chen, J.G.; et al. Ibrutinib Monotherapy in Symptomatic, Treatment-Naive Patients With Waldenstrom Macroglobulinemia. J. Clin. Oncol. 2018, 36, 2755–2761. [Google Scholar] [CrossRef] [Green Version]
- Treon, S.P.; Tripsas, C.K.; Meid, K.; Warren, D.; Varma, G.; Green, R.; Argyropoulos, K.V.; Yang, G.; Cao, Y.; Xu, L.; et al. Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N. Engl. J. Med. 2015, 372, 1430–1440. [Google Scholar] [CrossRef] [Green Version]
- Pika, T.; Hegenbart, U.; Flodrova, P.; Maier, B.; Kimmich, C.; Schonland, S.O. First report of ibrutinib in IgM-related amyloidosis: Few responses, poor tolerability, and short survival. Blood 2018, 131, 368–371. [Google Scholar] [CrossRef] [Green Version]
- Bou Zerdan, M.; Valent, J.; Diacovo, M.J.; Theil, K.; Chaulagain, C.P. Utility of Bruton’s Tyrosine Kinase Inhibitors in Light Chain Amyloidosis Caused by Lymphoplasmacytic Lymphoma (Waldenstrom’s Macroglobulinemia). Adv. Hematol. 2022, 2022, 1182384. [Google Scholar] [CrossRef]
- Fraser, C.S.; Spetz, J.K.E.; Qin, X.; Presser, A.; Choiniere, J.; Li, C.; Yu, S.; Blevins, F.; Hata, A.N.; Miller, J.W.; et al. Exploiting endogenous and therapy-induced apoptotic vulnerabilities in immunoglobulin light chain amyloidosis with BH3 mimetics. Nat. Commun 2022, 13, 5789. [Google Scholar] [CrossRef]
- Pasquer, H.; Belhadj, K.; Dupuis, J.; Oghina, S.; Galat, A.; Ladaique, A.; Maarek, A.; Roulin, L.; Gounot, R.; Poulot, E.; et al. Venetoclax induces profound and sustained responses in patients with relapsed/refractory light-chain amyloidosis. Br. J. Haematol. 2021, 193, 674–677. [Google Scholar] [CrossRef]
- Sidiqi, M.H.; Al Saleh, A.S.; Leung, N.; Jevremovic, D.; Aljama, M.A.; Gonsalves, W.I.; Buadi, F.K.; Kourelis, T.V.; Warsame, R.; Muchtar, E.; et al. Venetoclax for the treatment of translocation (11;14) AL amyloidosis. Blood Cancer J. 2020, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, V.J.; Lentzsch, S.; Pan, S.; Bhutani, D.; Richter, J.; Jagannath, S.; Liedtke, M.; Jaccard, A.; Wechalekar, A.D.; Comenzo, R.; et al. Venetoclax induces deep hematologic remissions in t(11;14) relapsed/refractory AL amyloidosis. Blood Cancer J. 2021, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Cibeira, M.T.; Blade, J. Upfront CyBorD in AL amyloidosis. Blood 2015, 126, 564–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wechalekar, A.D.; Cibeira, M.T.; Gibbs, S.D.; Jaccard, A.; Kumar, S.; Merlini, G.; Palladini, G.; Sanchorawala, V.; Schonland, S.; Venner, C.; et al. Guidelines for non-transplant chemotherapy for treatment of systemic AL amyloidosis: EHA-ISA working group. Amyloid 2022, 1–15. [Google Scholar] [CrossRef]
- Cibeira, M.T.; Sanchorawala, V.; Seldin, D.C.; Quillen, K.; Berk, J.L.; Dember, L.M.; Segal, A.; Ruberg, F.; Meier-Ewert, H.; Andrea, N.T.; et al. Outcome of AL amyloidosis after high-dose melphalan and autologous stem cell transplantation: Long-term results in a series of 421 patients. Blood 2011, 118, 4346–4352. [Google Scholar] [CrossRef]
- Kastritis, E.; Palladini, G.; Minnema, M.C.; Wechalekar, A.D.; Jaccard, A.; Lee, H.C.; Sanchorawala, V.; Gibbs, S.; Mollee, P.; Venner, C.P.; et al. Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis. N. Engl. J. Med. 2021, 385, 46–58. [Google Scholar] [CrossRef]
- Dispenzieri, A.; Buadi, F.; Laumann, K.; LaPlant, B.; Hayman, S.R.; Kumar, S.K.; Dingli, D.; Zeldenrust, S.R.; Mikhael, J.R.; Hall, R.; et al. Activity of pomalidomide in patients with immunoglobulin light-chain amyloidosis. Blood 2012, 119, 5397–5404. [Google Scholar] [CrossRef] [Green Version]
- Kastritis, E.; Gavriatopoulou, M.; Roussou, M.; Bagratuni, T.; Migkou, M.; Fotiou, D.; Ziogas, D.C.; Kanellias, N.; Eleutherakis-Papaiakovou, E.; Dialoupi, I.; et al. Efficacy of lenalidomide as salvage therapy for patients with AL amyloidosis. Amyloid 2018, 25, 234–241. [Google Scholar] [CrossRef]
- Palladini, G.; Milani, P.; Foli, A.; Basset, M.; Russo, F.; Perlini, S.; Merlini, G. A phase 2 trial of pomalidomide and dexamethasone rescue treatment in patients with AL amyloidosis. Blood 2017, 129, 2120–2123. [Google Scholar] [CrossRef] [Green Version]
- Sanchorawala, V.; Shelton, A.C.; Lo, S.; Varga, C.; Sloan, J.M.; Seldin, D.C. Pomalidomide and dexamethasone in the treatment of AL amyloidosis: Results of a phase 1 and 2 trial. Blood 2016, 128, 1059–1062. [Google Scholar] [CrossRef] [Green Version]
- Sanchorawala, V.; Wright, D.G.; Rosenzweig, M.; Finn, K.T.; Fennessey, S.; Zeldis, J.B.; Skinner, M.; Seldin, D.C. Lenalidomide and dexamethasone in the treatment of AL amyloidosis: Results of a phase 2 trial. Blood 2007, 109, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Sidana, S.; Muchtar, E.; Sidiqi, M.H.; Jevremovic, D.; Dispenzieri, A.; Gonsalves, W.; Buadi, F.; Lacy, M.Q.; Hayman, S.R.; Kourelis, T.; et al. Impact of minimal residual negativity using next generation flow cytometry on outcomes in light chain amyloidosis. Am. J. Hematol. 2020, 95, 497–502. [Google Scholar] [CrossRef] [PubMed]
Hematologic Assessment | Organ Assessment |
---|---|
Immunofixation electrophoresis and protein electrophoresis for serum and urine | Renal: creatinine, 24 h urine testing with urine immunofixation and protein electrophoresis with quantification of albuminuria |
Serum free light chain levels | Liver: AST, ALT, alkaline phosphatase, bilirubin, albumin |
Quantitative immunoglobulins | Neurologic: thorough physical exam and history with electromyography/nerve conduction study, anti-MAG antibody testing, and autonomic testing as needed |
Complete blood counts | Cardiac: electrocardiogram, echocardiogram (including global longitudinal strain), troponin, and NT-proBNP with cardiac MRI and DPD/PYP scan as needed |
Bone marrow biopsy and aspirate, including immunohistochemistry, cytogenetics, multiple myeloma FISH panel, and MYD88 testing | Pulmonary: CT scan and/or pulmonary function tests as needed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarosiek, S.; Branagan, A.R.; Treon, S.P.; Castillo, J.J. IgM-Related Immunoglobulin Light Chain (AL) Amyloidosis. Hemato 2022, 3, 731-741. https://doi.org/10.3390/hemato3040049
Sarosiek S, Branagan AR, Treon SP, Castillo JJ. IgM-Related Immunoglobulin Light Chain (AL) Amyloidosis. Hemato. 2022; 3(4):731-741. https://doi.org/10.3390/hemato3040049
Chicago/Turabian StyleSarosiek, Shayna, Andrew R. Branagan, Steven P. Treon, and Jorge J. Castillo. 2022. "IgM-Related Immunoglobulin Light Chain (AL) Amyloidosis" Hemato 3, no. 4: 731-741. https://doi.org/10.3390/hemato3040049
APA StyleSarosiek, S., Branagan, A. R., Treon, S. P., & Castillo, J. J. (2022). IgM-Related Immunoglobulin Light Chain (AL) Amyloidosis. Hemato, 3(4), 731-741. https://doi.org/10.3390/hemato3040049