Interference of Monoclonal Antibody Therapy in Transfusion: An Update
Abstract
:1. Introduction
2. Anti-CD38 Monoclonal Antibodies
2.1. How anti-CD38 Agents Work
2.2. Interferences in Pre-Transfusion Tests
2.3. Strategies to Overcome Anti-CD38 Interferences in Pre-Transfusion Tests
3. CD47/SIRPα-Targeted Drugs
3.1. How CD47/SIRPα-Targeted Drugs Work
3.2. Interferences in Pre-Transfusion Tests
3.3. Strategies to Overcome CD47/SIRPα-Targeted Drug Interferences in Transfusion Tests
4. How to Manage Transfusion in Patients Receiving Anti-CD38 and CD47/Sirpα-Targeted Drugs
- ABO/Rh (D) group typing
- Antibody screening (IATs) and identification, if positive
- DAT
- Phenotyping (if no transfusion/pregnancy/transplantation three months before) or genotyping (if recent transfusions or DAT positive) for Rh (CcDEe), K, JKa, JKb, Fya, Fyb, S, and s
5. Conclusions and Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pierpont, T.M.; Limper, C.B.; Richards, K.L. Past, present, and future of Rituximab-The world’s first oncology monoclonal antibody therapy. Front. Oncol. 2018, 8, 163. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Wool, G.D. Impact of Novel Monoclonal Antibody Therapeutics on Blood Bank Pretransfusion Testing. Hematol. Oncol. Clin. N. Am. 2019, 33, 797–811. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Sui, W.; Huang, H.; Zhang, Y.; Ding, X.; Gao, C.; Wang, Y. Effect of clinical application of anti-CD38 and anti-CD47 monoclonal antibodies on blood group detection and transfusion therapy and treatment. Leuk. Res. 2022, 122, 106953. [Google Scholar] [CrossRef] [PubMed]
- Shaz, B.H. Pretransfusion testing. In Transfusion Medicine and Hemostasis: Clinical and Laboratory Aspects; Academic Press: Cambridge, MA, USA, 2009; pp. 93–101. [Google Scholar]
- Lancman, G.; Arinsburg, S.; Jhang, J.; Jay Cho, H.; Jagannath, S.; Madduri, D.; Parekh, S.; Richter, J.; Chari, A. Blood transfusion management for patients treated with anti-CD38 monoclonal antibodies. Front. Immunol. 2018, 9, 2616. [Google Scholar] [CrossRef] [PubMed]
- Velliquette, R.W.; Aeschlimann, J.; Kirkegaard, J.; Shakarian, G.; Lomas-Francis, C.; Westhoff, C.M. Monoclonal anti-CD47 interference in red cell and platelet testing. Transfusion 2019, 59, 730–737. [Google Scholar] [CrossRef]
- Jones, A.D.; Moayeri, M.; Nambiar, A. Impact of new myeloma agents on the transfusion laboratory. Pathology 2021, 53, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Solves, P.; Tur, S.; Arnao, M.; Freiria, C.; Dominguez, L.; Pons, M.J.; Gómez, I.; Sanz, G.F.; Carpio, N. Transfusion management in multiple myeloma patients receiving daratumumab: Experience of a single tertiary care centre. Transfus. Apher. Sci. 2020, 59, 102658. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Sonneveld, P.; Sun, H. Daratumumab and Blood-Compatibility Testing. N. Engl. J. Med. 2016, 375, 2497–2498. [Google Scholar]
- Voorhees, P.M.; Kaufman, J.L.; Laubach, J.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D., Jr. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: The GRIFFIN trial. Blood J. Am. Soc. Hematol. 2020, 36, 936–945. [Google Scholar] [CrossRef]
- Dhillon, S. Isatuximab: First Approval. Drugs 2020, 80, 905–912. [Google Scholar] [CrossRef]
- Tauscher, C.; Moldenhauer, S.; Bryant, S.; DiGuardo, M.; Jacob, E.K. Antibody incidence and red blood cell transfusions in patients on daratumumab. Transfusion 2021, 61, 3468–3472. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Wolf, L.A.; Mettman, D.; Plapp, F.V. Risk of RBC alloimmunization in multiple myeloma patients treated by Daratumumab. Vox Sang. 2020, 115, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Offidani, M.; Corvatta, L.; Morè, S.; Nappi, D.; Martinelli, G.; Olivieri, A.; Cerchione, C. Daratumumab for the Management of Newly Diagnosed and Relapsed/Refractory Multiple Myeloma: Current and Emerging Treatments. Front. Oncol. 2021, 10, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Cipkar, C.; Chen, C.; Trudel, S. Antibodies and bispecifics for multiple myeloma: Effective effector therapy. Hematology 2022, 2022, 163–172. [Google Scholar] [CrossRef]
- Abramson, H.N. Immunotherapy of multiple myeloma: Promise and challenges. ImmunoTargets Ther. 2021, 10, 343–371. [Google Scholar] [CrossRef] [PubMed]
- Quach, H.; Benson, S.; Haysom, H.; Wilkes, A.M.; Zacher, N.; Cole-Sinclair, M.; Prince, H.M.; Mollee, P.; Spencer, A.; Ho, P.J. Considerations for pre-transfusion immunohaematology testing in patients receiving the anti-CD38 monoclonal antibody daratumumab for the treatment of multiple myeloma. Intern. Med. J. 2018, 48, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Fattizzo, B.; Barcellini, W. New Therapies for the Treatment of Warm Autoimmune Hemolytic Anemia. Transfus. Med. Rev. 2022, 36, 175–180. [Google Scholar] [CrossRef]
- Marco-Ayala, J.; Gómez-Seguí, I.; Sanz, G.; Solves, P. Pure red cell aplasia after major or bidirectional ABO incompatible hematopoietic stem cell transplantation: To treat or not to treat, that is the question. Bone Marrow Transplant. 2021, 56, 769–778. [Google Scholar] [CrossRef]
- Nedumcheril, M.T.; De Simone, R.A.; Racine-Brzostek, S.E.; Chaekal, O.K.; Vasovic, L.V. Overcoming drug interference in transfusion testing: A spotlight on daratumumab. J. Blood Med. 2021, 12, 327–336. [Google Scholar] [CrossRef]
- Chapuy, C.I.; Nicholson, R.T.; Aguad, M.D.; Chapuy, B.; Laubach, J.P.; Richardson, P.G.; Doshi, P.; Kaufman, R.M. Resolving the daratumumab interference with blood compatibility testing. Transfusion 2015, 55, 1545–1554. [Google Scholar] [CrossRef]
- Song, J.; Fu, R. Review: Effects of anti-CD38 monoclonal antibodies on red blood cell transfusion and interventions. J. Clin. Lab. Anal. 2021, 35, e23832. [Google Scholar] [CrossRef] [PubMed]
- Chapuy, C.I.; Aguad, M.D.; Nicholson, R.T.; AuBuchon, J.P.; Cohn, C.S.; Delaney, M.; Fung, M.K.; Unger, M.; Doshi, P.; Murphy, M.F. International validation of a dithiothreitol (DTT)-based method to resolve the daratumumab interference with blood compatibility testing. Transfusion 2016, 56, 2964–2972. [Google Scholar] [CrossRef] [PubMed]
- Sigle, J.P.; Mihm, B.; Suna, R.; Bargetzi, M. Extending shelf life of dithiothreitol-treated panel RBCs to 28 days. Vox Sang. 2018, 113, 397–399. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, M.; Kashiwagi, H.; Nakayama, K.; Sakuragi, M.; Nakao, M.; Morikawa, T.; Kiyokawa, T.; Aochi, H.; Nagamine, K.; Shibayama, H. Distinct effects of daratumumab on indirect and direct antiglobulin tests: A new method employing 0.01 mol/L dithiothreitol for negating the daratumumab interference with preserving K antigenicity (Osaka method). Transfusion 2018, 58, 3003–3013. [Google Scholar] [CrossRef] [PubMed]
- Izaguirre, E.C.; del Mar Luis-Hidalgo, M.; González, L.L.; Castaño, C.A. New method for overcoming the interference produced by anti-CD38 monoclonal antibodies in compatibility testing. Blood Transf. 2020, 18, 290–294. [Google Scholar]
- Feng, C.C.; Chang, C.W.; Lien, Z.Y.; Lin, J.A.; Chen, T.T.; Yeh, S.P. Better resolving of anti-CD38 antibody interference with blood compatibility testing by using manual polybrene method compared with dithiothreitol-pretreatment indirect antiglobulin test. J. Clin. Lab. Anal. 2023, 37, e24891. [Google Scholar] [CrossRef] [PubMed]
- Carreño-Tarragona, G.; Cedena, T.; Montejano, L.; Alonso, R.; Miras, F.; Valeri, A.; Rivero, A.; Lahuerta, J.J.; Martinez-Lopez, J. Papain-treated panels are a simple method for the identification of alloantibodies in multiple myeloma patients treated with anti-CD38-based therapies. Transfus. Med. 2019, 29, 193–196. [Google Scholar] [CrossRef]
- Bub, C.B.; Dos Reis, I.N.; Aravechia, M.G.; Santos, L.D.; Bastos, E.P.; Kutner, J.M.; Castilho, L. Transfusion management for patients taking an anti-CD38 monoclonal antibody. Rev. Bras. Hematol. Hemoter. 2018, 40, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Aung, F.; Spencer, J.; Potter, D.; Pham, T.D.; Farooqui, N.; Platt, K.R.; Zayat, R.; Oliveira, M.; Smeland-Wagman, R.; Petersen, E. Efficient neutralization of daratumumab in pretransfusion samples using a novel recombinant monoclonal anti-idiotype antibody. Transfusion 2022, 62, 1511–1518. [Google Scholar] [CrossRef]
- Selleng, K.; Gebicka, P.D.; Thiele, T. F(ab′) 2 Fragments to Overcome Daratumumab Interference in Transfusion Tests. N. Engl. J. Med. 2018, 379, 90–91. [Google Scholar] [CrossRef]
- Chinoca Ziza, K.N.; Paiva, T.A.; Mota, S.R.; Dezan, M.R.; Schmidt, L.C.; Brunetta, D.M.; Ricci, G.; Basques, F.V.; Barroso-Duarte, F.; Rocha, V. A blockage monoclonal antibody protocol as an alternative strategy to avoid anti-CD38 interference in immunohematological testing. Transfusion 2019, 59, 1827–1835. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.E.; Kirkley, S.; Patel, N.; Masel, D.; Bowen, R.; Blumberg, N.; Refaai, M.A. An alternative method to dithiothreitol treatment for antibody screening in patients receiving daratumumab. Transfusion 2015, 55, 2292–2293. [Google Scholar] [CrossRef] [PubMed]
- Ehrend, E.; Manns, P.; Harenkamp, S.; Seifried, E.; Geisen, C.; Bonig, H. Preanalytic depletion of medicinal anti-CD38 antibody from patient plasma for immunohematology testing. Blood 2021, 138, 814–817. [Google Scholar] [CrossRef] [PubMed]
- Chari, A.; Arinsburg, S.; Jagannath, S.; Satta, T.; Treadwell, I.; Catamero, D.; Morgan, G.; Feng, H.; Uhlar, C.; Khan, I. Blood Transfusion Management and Transfusion-Related Outcomes in Daratumumab-Treated Patients with Relapsed or Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2018, 18, 44–51. [Google Scholar] [CrossRef]
- Takimoto, C.H.; Chao, M.P.; Gibbs, C.; McCamish, M.A.; Liu, J.; Chen, J.Y.; Majeti, R.; Weissman, I.L. The Macrophage “Do not eat me” signal, CD47, is a clinically validated cancer immunotherapy target. Ann. Oncol. 2019, 30, 486–489. [Google Scholar] [CrossRef]
- Gallazzi, M.; Ucciero, M.A.M.; Faraci, D.G.; Mahmoud, A.M.; Al Essa, W.; Gaidano, G.; Mouhssine, S.; Crisà, E. New Frontiers in Monoclonal Antibodies for the Targeted Therapy of Acute Myeloid Leukemia and Myelodysplastic Syndromes. Int. J. Mol. Sci. 2022, 23, 7542. [Google Scholar] [CrossRef]
- Paul, B.; Liedtke, M.; Khouri, J.; Rifkin, R.; Gandhi, M.D.; Kin, A.; Levy, M.Y.; Silbermann, R.; Cottini, F.; Sborov, D.W. A phase II multi-arm study of magrolimab combinations in patients with relapsed/refractory multiple myeloma. Futur. Oncol. 2023, 19, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Russ, A.; Hua, A.B.; Montfort, W.R.; Rahman, B.; Bin, R.I.; Khalid, M.U.; Carew, J.S.; Nawrocki, S.T.; Persky, D.; Anwer, F. Blocking “don’t eat me” signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev. 2018, 32, 480–489. [Google Scholar] [CrossRef]
- Kauder, S.E.; Kuo, T.C.; Harrabi, O.; Chen, A.; Sangalang, E.; Doyle, L.; Rocha, S.S.; Bollini, S.; Han, B.; Sim, J. ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile. PLoS ONE 2018, 13, e0201832. [Google Scholar] [CrossRef]
- Maute, R.; Xu, J.; Weissman, I.L. CD47–SIRPα-targeted therapeutics: Status and prospects. Immuno-Oncol. Technol. 2022, 13, 100070. [Google Scholar] [CrossRef]
- Anniss, A.M.; Sparrow, R.L. Expression of CD47 (integrin-associated protein) decreases on red blood cells during storage. Transfus. Apher. Sci. 2002, 27, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.G.; Vyas, P.; Kambhampati, S.; Al Malki, M.M.; Larson, R.A.; Asch, A.S.; Mannis, G.; Chai-Ho, W.; Tanaka, T.N.; Bradley, T.J. Tolerability and Efficacy of the Anticluster of Differentiation 47 Antibody Magrolimab Combined with Azacitidine in Patients with Previously Untreated AML: Phase Ib Results. J. Clin. Oncol. 2023, 41, 4893–4904. [Google Scholar] [CrossRef] [PubMed]
- Reyland, L.; Dwight, M.; Bullock, T.; Latham, T.; Lord, K.; Wardle, A.; Palmer, D.; Eggington, J.; Callaghan, T.; Seals, D. Two case reports involving therapeutic monoclonal anti-CD47 (Hu5F9-G4), it’s effect on compatibility testing and subsequent selection of components for transfusion. Transfus. Med. 2020, 30, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Brierley, C.K.; Staves, J.; Roberts, C.; Johnson, H.; Vyas, P.; Goodnough, L.T.; Murphy, M.F. The effects of monoclonal anti-CD47 on RBCs, compatibility testing, and transfusion requirements in refractory acute myeloid leukemia. Transfusion 2019, 59, 2248–2254. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Staves, J.; Storry, J.R.; Dinoso, J.; Renard, C.; Doshi, P.; Johnson, L.D.S.; Westhoff, C.M.; Murphy, M.F. Transfusion management in the era of magrolimab (Hu5F9-G4), an anti-CD47 monoclonal antibody therapy. Transfusion 2023, 63, 2377–2383. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Yoon, M.S.; Hustinx, H.; Sim, J.; Wan, H.I.; Kim, H. Assessing and mitigating the interference of ALX148, a novel CD47 blocking agent, in pretransfusion compatibility testing. Transfusion 2020, 60, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Carll, T.; Mei, Z.; Aldarweesh, F.; Wool, G.D. Alloimmunization rates in transfused patients receiving anti-CD47 antibody therapy. Transfusion 2022, 62, 916–918. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Cui, Y.; Ren, D.; Jiang, X.; Fu, W.; Mu, S.; Yang, L.; Chen, J. Pretreatment with daudi cells eliminates anti-cd47 monoclonal antibody interference in immunohematology testing. Blood Transfus. 2024, 22, 20–29. [Google Scholar]
- Tan, M.; Zacher, N.; French, R.; Borosak, M.; Lennard, S.; Le Viellez, A.; Benson, S. Guidance for transfusion management in patients receiving magrolimab therapy (anti-CD47 monoclonal antibody). Intern. Med. J. 2022, 52, 2165–2171. [Google Scholar] [CrossRef]
- Bullock, T.; Foster, A.; Clinkard, B. Alloimmunisation rate of patients on Daratumumab: A retrospective cohort study of patients in England. Transf. Med. 2021, 31, 474–480. [Google Scholar] [CrossRef]
- Phou, S.; Costello, C.; Kopko, P.M.; Allen, E.S. Optimizing transfusion management of multiple myeloma patients receiving daratumumab-based regimens. Transfusion 2021, 61, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.S.; Hendrickson, J.E.; Tormey, C.A. RBC alloimmunization and daratumumab: Are efforts to eliminate interferences and prevent new antibodies necessary? Transfusion 2021, 61, 3283–3285. [Google Scholar] [CrossRef] [PubMed]
Anti-CD38 | CD47/SIRPα-Targeted Drugs | |
---|---|---|
ABO typing | No | Interference in reverse ABO typing |
Rh/extended antigen typing | No | Possible |
Antibody screening and cross-matching (IATs) | Pan-agglutinin (+1–+2) | Pan-agglutinin (+3–+4) |
Direct antiglobulin test | Negative/Weak Positive | Positive |
Eluate | Negative | Pan-agglutinin |
Auto-control | Negative | Pan-agglutinin |
CD47/SIRPα-Targeted Drugs | |||
---|---|---|---|
Methods | Anti-CD38 | Anti-CD47 IgG4 | ALX148 |
IATs using DTT-treated RBCs | Yes | No | No |
IATs using RBCs treated with papain or trypsin | Yes | No | No |
IATs with anti-human globulin that does not detect IgG4 | No | Yes | No |
Multiple adsorptions 4–6 using allogeneic RBCs or pooled platelets | No | Yes | Yes |
Soluble antigens | Yes | Yes | Unknown |
Antibody fragments | Yes | Unknown | Unknown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solves Alcaina, P.; Asensi Cantó, P. Interference of Monoclonal Antibody Therapy in Transfusion: An Update. Hemato 2024, 5, 220-229. https://doi.org/10.3390/hemato5030018
Solves Alcaina P, Asensi Cantó P. Interference of Monoclonal Antibody Therapy in Transfusion: An Update. Hemato. 2024; 5(3):220-229. https://doi.org/10.3390/hemato5030018
Chicago/Turabian StyleSolves Alcaina, Pilar, and Pedro Asensi Cantó. 2024. "Interference of Monoclonal Antibody Therapy in Transfusion: An Update" Hemato 5, no. 3: 220-229. https://doi.org/10.3390/hemato5030018
APA StyleSolves Alcaina, P., & Asensi Cantó, P. (2024). Interference of Monoclonal Antibody Therapy in Transfusion: An Update. Hemato, 5(3), 220-229. https://doi.org/10.3390/hemato5030018