Evaluating the Efficacy of Various Laser Types in Periodontal Treatment: A Narrative Review
Abstract
1. Introduction
1.1. Laser Light Properties
1.2. Laser Setup
Uses of Lasers in Dentistry
- Gingivectomy/gingivoplasty
- Treatment of periodontal disease
- Removal of hyperplastic/granulation tissue
- Frenectomy/frenotomy
- Second-stage recovery of implants
- Excision of tumors/lesions
- Incision/excision biopsies
- Caries diagnosis and removal
- Curing of composites
- Activation of tooth-bleaching solutions, etc.
1.3. Effects on Tissue Related to Temperature Changes Generated by Laser Energy
Alteration Effects in Tissue by Laser Application
- (1)
- Photothermal: This refers to the generation of heat in the operative area by the conversion of light energy to thermal energy and is the primary effect observed when a laser reaches the targeted tissues, usually soft tissues [20]. This type of effect is usually observed when chromophores absorb laser energy, generating heat used for tasks such as cutting tissue or coagulating blood. Vaporization is an interaction that involves evaporation and homogeneous bubble nucleation and takes places at temperatures lower than the material’s critical point, limiting the amount of energy that can be exploited [21]. Naturally, it is important to manage this heat generation with extreme care in order to prevent unwanted damage to the tissues.
- (2)
- Photodisruptive Ablation: Photodisruption produced by a laser can be used with the intent to precisely disrupt or break down tissues, such as calculus or infected tissues on periodontally afflicted root surfaces. The deliverance of energy is typically very short, with intense pulses. It creates mechanical waves and a rapid expansion of gas and fluid matter within the tissue targeted, leading to its disintegration. In hard tissues, their removal typically involves high-powered laser bursts interacting with water, which may originate from both the working hand piece and the targeted tissue and leads to rapid expansion of the water molecules [22]. An example is the efficiency of erbium laser ablation, which is largely due to micro-explosions in overheated tissue water, where the laser energy is intensely absorbed. Consequently, dental and bone tissue are not vaporized but rather broken down through a photomechanical ablation process. This generates a distinctive popping sound during the use of the erbium laser and minimizes thermal damage because of thermal energy residue, especially when the concept of thermal relaxation is applied.
- (3)
- Plasma-induced Ablation: Distinguished from the photodisruptive type, this type of ablation works by high power density, which forms local ionized plasma at a focal point. It was reported using a neodymium-doped yttrium lithium fluoride (Nd:YLF) laser [23].
- (4)
- Photochemical: Photons have the ability to initiate chemical responses in tissues, creating photochemical reactions. These reactions can contribute to some beneficial effects in biostimulation and antimicrobial photodynamic therapy (aPDT).
- (a)
- Photobiomodulation or biostimulation involves using non-ionizing light sources that interact with endogenous chromophores to stimulate biological responses. Several signaling pathways that are activated via reactive oxygen species, cyclic AMP, NO, and Ca2+ lead to activation of transcription factors, which in turn increases the expression of genes related to cell migration, proliferation, anti-inflammatory signaling, and anti-apoptotic proteins, thus accelerating healing, enhancing circulation, reducing edema, and alleviating pain [24].
- (b)
- The application of aPDT is another use of lasers in periodontal nonsurgical therapy that involves the use of light-sensitive substances, known as photosensitizers, in conjunction with light energy from a laser. During this process, the photosensitizer is first inserted into the periodontal pocket and activated by a laser. It absorbs the energy from photons and transfers it to nearby molecules [25]. This transfer leads to the creation of reactive oxygen species and free radicals, which are oxidative agents capable of damaging bacterial cells. They target key bacterial components such as proteins, lipids, and nucleic acids, leading to the inactivation and potential destruction of bacteria [26]. A significant advantage of aPDT over traditional antibiotic treatments is its ability to avoid the development of resistant bacterial strains [27].
- (5)
- Fluorescence: It has been proven that exposure of tooth structures to the 655 nm visible wavelength produced by diode lasers can reveal their potential carious lesions. The degree of fluorescence correlates with the lesion size and assists in diagnosing early carious lesions [28], as seen in devices like Diagnodent [29]. The idea behind it is that the fluorescence is excited from the carious tooth structure by the light energy, which is reflected back to the laser detector, which analyzes and quantifies the degree of caries [14].
2. Materials and Methods
2.1. Main Focused Question
2.2. Eligibility Criteria
2.3. Exclusion Criteria
2.4. Screening Process
3. Results
Study Selection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andras, N.L.; Mohamed, F.F.; Chu, E.Y.; Foster, B.L. Between a rock and a hard place: Regulation of mineralization in the periodontium. Genesis 2022, 60, e23474. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Park, C.; Perez, R.; Lee, H.; Jang, J.; Lee, H.; Wall, I.; Shi, S.; Kim, H. Advanced Biomatrix Designs for Regenerative Therapy of Periodontal Tissues. J. Dent. Res. 2014, 93, 1203–1211. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, K.H.; Rios, H.F.; Lee, Y.M.; Giannobile, W.V.; Seol, Y.J. Spatiotemporally controlled microchannels of periodontal mimic scaffolds. J. Dent. Res. 2014, 93, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
- Lobprise, H.B.; Johnson, J. Periodontal Disease. In Pet-Specific Care for the Veterinary Team; Wiley: New York, NY, USA, 2023; pp. 271–275. [Google Scholar] [CrossRef]
- Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet 2005, 366, 1809–1820. [Google Scholar] [CrossRef] [PubMed]
- Chapple, I.L.C.; Mealey, B.L.; Van Dyke, T.E.; Bartold, P.M.; Dommisch, H.; Eickholz, P.; Geisinger, M.L.; Genco, R.J.; Glogauer, M.; Goldstein, M.; et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Bamashmous, S.; Kotsakis, G.A.; Kerns, K.A.; Leroux, B.G.; Zenobia, C.; Chen, D.; Trivedi, H.M.; McLean, J.S.; Darveau, R.P. Human variation in gingival inflammation. Proc. Natl. Acad. Sci. USA 2021, 118, e2012578118. [Google Scholar] [CrossRef]
- Dannewitz, B.; Holtfreter, B.; Eickholz, P. Periodontitis—Therapy of a widespread disease. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2021, 64, 931–940. [Google Scholar] [CrossRef]
- Nazir, M.; Al-Ansari, A.; Al-Khalifa, K.; Alhareky, M.; Gaffar, B.; Almas, K. Global Prevalence of Periodontal Disease and Lack of Its Surveillance. Sci. World J. 2020, 2020, 2146160. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Periodontol. 2018, 89, S159–S172. [Google Scholar] [CrossRef]
- Preshaw, P.M.; Alba, A.L.; Herrera, D.; Jepsen, S.; Konstantinidis, A.; Makrilakis, K.; Taylor, R. Periodontitis and diabetes: A two-way relationship. Diabetologia 2012, 55, 21–31. [Google Scholar] [CrossRef]
- Sanz, M.; del Castillo, A.M.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D’aIuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F.; et al. Periodontitis and cardiovascular diseases: Consensus report. J. Clin. Periodontol. 2020, 47, 268–288. [Google Scholar] [CrossRef] [PubMed]
- Tibúrcio-Machado, C.S.; Michelon, C.; Zanatta, F.B.; Gomes, M.S.; Marin, J.A.; Bier, C.A. The global prevalence of apical periodontitis: A systematic review and meta-analysis. Int. Endod. J. 2021, 54, 712–735. [Google Scholar] [CrossRef]
- Coluzzi, D.J. Fundamentals of dental lasers: Science and instruments. Dent. Clin. N. Am. 2004, 48, 751–770. [Google Scholar] [CrossRef]
- Singh, S.; Zeng, H.B.; Guo, C.; Cai, W. Nanomaterials; Processing and Characterization with Lasers; Wiley: New York, NY, USA, 2010; p. 700. [Google Scholar]
- Myers, T.D. Lasers in dentistry. J. Am. Dent. Assoc. 1991, 122, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Elavarasu, S.; Naveen, D.; Thangavelu, A. Lasers in periodontics. J. Pharm. Bioallied Sci. 2012, 4 (Suppl. S2), S260. [Google Scholar] [CrossRef] [PubMed]
- Theodoro, L.H.; Marcantonio, R.A.C.; Wainwright, M.; Garcia, V.G. LASER in periodontal treatment: Is it an effective treatment or science fiction? Braz. Oral Res. 2021, 35 (Suppl. S2), e099. [Google Scholar] [CrossRef]
- Verma, S.K.; Maheshwari, S.; Singh, R.K.; Chaudhari, P.K. Laser in dentistry: An innovative tool in modern dental practice. Natl. J. Maxillofac. Surg. 2012, 3, 124. [Google Scholar] [CrossRef]
- Niemz, M. Laser-Tissue Interactions: Fundamentals and Applications; Springer: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Ki, H. On vaporization in laser material interaction. J. Appl. Phys. 2010, 107, 104908. [Google Scholar] [CrossRef]
- Kerse, C.; Kalaycıoğlu, H.; Elahi, P.; Çetin, B.; Kesim, D.K.; Akçaalan, Ö.; Yavaş, S.; Asik, M.D.; Öktem, B.; Hoogland, H.; et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 2016, 537, 84–88. [Google Scholar] [CrossRef]
- Niemz, M.H. Evaluation of physical parameters during the plasma-induced ablation of teeth. In Proceedings of the International Symposium on Biomedical Optics Europe’94, Lille, France, 6–10 September 1994; Volume 2323, pp. 170–178. [Google Scholar] [CrossRef]
- De Freitas, L.F.; Hamblin, M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 348–364. [Google Scholar] [CrossRef]
- Meisel, P.; Kocher, T. Photodynamic therapy for periodontal diseases: State of the art. J. Photochem. Photobiol. B 2005, 79, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Konopka, K.; Goslinski, T. Photodynamic Therapy in Dentistry. J. Dent. Res. 2007, 86, 694–707. [Google Scholar] [CrossRef]
- Ghorbani, J.; Rahban, D.; Aghamiri, S.; Teymouri, A.; Bahador, A. Photosensitizers in antibacterial photodynamic therapy: An overview. Laser Ther. 2018, 27, 293. [Google Scholar] [CrossRef]
- Hibst, R.; Paulus, R.; Lussi, A. Detection of Occlusal Caries by Laser Fluorescence: Basic and Clinical Investigations. Med. Laser Appl. 2001, 16, 205–213. [Google Scholar] [CrossRef]
- Nokhbatolfoghahaie, H.; Khasi, M.A.; Chiniforush, N.; Khoei, F.; Safavi, N.; Zadeh, B.Y. Evaluation of Accuracy of DIAGNOdent in Diagnosis of Primary and Secondary Caries in Comparison to Conventional Methods. J. Lasers Med. Sci. 2013, 4, 159. [Google Scholar] [PubMed] [PubMed Central]
- Boulnois, J.L. Photophysical processes in recent medical laser developments: A review. Lasers Med. Sci. 1986, 1, 47–66. [Google Scholar] [CrossRef]
- Braun, A.; Dehn, C.; Krause, F.; Jepsen, S. Short-term clinical effects of adjunctive antimicrobial photodynamic therapy in periodontal treatment: A randomized clinical trial. J. Clin. Periodontol. 2008, 35, 877–884. [Google Scholar] [CrossRef]
- Qadri, T.; Javed, F.; Johannsen, G.; Gustafsson, A. Role of diode lasers (800–980 nm) as adjuncts to scaling and root planing in the treatment of chronic periodontitis: A systematic review. Photomed. Laser Surg. 2015, 33, 568–575. [Google Scholar] [CrossRef]
- Behdin, S.; Monje, A.; Lin, G.; Edwards, B.; Othman, A.; Wang, H. Effectiveness of Laser Application for Periodontal Surgical Therapy: Systematic Review and Meta-Analysis. J. Periodontol. 2015, 86, 1352–1363. [Google Scholar] [CrossRef]
- Cochran, D.L.; Cobb, C.M.; Bashutski, J.D.; Chun, Y.P.; Lin, Z.; Mandelaris, G.A.; McAlister, B.S.; Murakami, S.; Rios, H.F. Emerging Regenerative Approaches for Periodontal Reconstruction: A Consensus Report From the AAP Regeneration Workshop. J. Periodontol. 2015, 86, S153. [Google Scholar] [CrossRef]
- Zisis, S.; Zisis, V.; Braun, A. Laser Application for Periodontal Surgical Therapy: A Literature Review. Oral 2025, 5, 11. [Google Scholar] [CrossRef]
- Stone, P. Popping the (PICO) question in research and evidence-based practice. Appl. Nurs. Res. 2002, 15, 197–198. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Chou, R.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Aena, P.J.; Parul, A.; Siddharth, P.; Pravesh, G.; Vikas, D.; Vandita, A. The clinical efficacy of laser assisted modified Widman flap: A randomized split mouth clinical trial. Indian J. Dent. Res. 2015, 26, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Pradhan, S. Treatment of Infrabony Defects by Open Flap Debridement with or without Diode Laser. Kathmandu Univ. Med. J. 2022, 20, 461–466. [Google Scholar] [CrossRef]
- Crespi, R.; Cappare, P.; Gherlone, E.; Romanos, G.E. Comparison of modified widman and coronally advanced flap surgery combined with CO2 laser root irradiation in periodontal therapy: A 15-year follow-up. Int. J. Periodontics Restor. Dent. 2011, 31, 641–651. Available online: https://pubmed.ncbi.nlm.nih.gov/22140666/ (accessed on 3 March 2024).
- Dilsiz, A.; Aydin, T.; Canakci, V.; Cicek, Y. Root Surface Biomodification with Nd:YAG Laser for the Treatment of Gingival Recession with Subepithelial Connective Tissue Grafts. Photomed. Laser Surg. 2010, 28, 337. [Google Scholar] [CrossRef]
- Dilsiz, A.; Aydin, T.; Yavuz, M.S. Root Surface Biomodification with an Er:YAG Laser for the Treatment of Gingival Recession with Subepithelial Connective Tissue Grafts. Photomed. Laser Surg. 2010, 28, 511. [Google Scholar] [CrossRef]
- Dilsiz, A.; Canakci, V.; Aydin, T. The Combined Use of Nd:YAG Laser and Enamel Matrix Proteins in the Treatment of Periodontal Infrabony Defects. J. Periodontol. 2010, 81, 1411–1418. [Google Scholar] [CrossRef]
- Doǧan, G.E.; Demir, T.; Orbak, R. Effect of low-level laser on guided tissue regeneration performed with equine bone and membrane in the treatment of intrabony defects: A clinical study. Photomed. Laser Surg. 2014, 32, 226–231. [Google Scholar] [CrossRef]
- Fernandes-Dias, S.B.; De Marco, A.C.; Santamaria, M.; Kerbauy, W.D.; Jardini, M.A.N.; Santamaria, M.P. Connective tissue graft associated or not with low laser therapy to treat gingival recession: Randomized clinical trial. J. Clin. Periodontol. 2015, 42, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, M.P.; Fernandes-Dias, S.B.; Araújo, C.F.; da Silva Neves, F.; Mathias, I.F.; Andere, N.M.R.B.; Jardini, M.A.N. 2-Year Assessment of Tissue Biostimulation With Low-Level Laser on the Outcomes of Connective Tissue Graft in the Treatment of Single Gingival Recession: A Randomized Clinical Trial. J. Periodontol. 2017, 88, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, S.R.; Padhye, A.M.; Byakod, G.; Jain, S.A.; Padbidri, V.; Shivaswamy, S. A comparative evaluation of the efficacy of diode laser as an adjunct to mechanical debridement versus conventional mechanical debridement in periodontal flap surgery: A clinical and microbiological study. Photomed. Laser Surg. 2012, 30, 598–603. [Google Scholar] [CrossRef]
- Karthikeyan, J.; Vijayalakshmi, R.; Mahendra, J.; Kanakamedala, A.K.; Chellathurai, B.N.K.; Selvarajan, S.; Namachivayam, A. Diode Laser as an Adjunct to Kirkland Flap Surgery-A Randomized Split-Mouth Clinical and Microbiological Study. Photobiomodul. Photomed. Laser Surg. 2019, 37, 99–109. [Google Scholar] [CrossRef]
- Kolamala, N.; Nagarakanti, S.; Chava, V.K. Effect of diode laser as an adjunct to open flap debridement in treatment of periodontitis—A randomized clinical trial. J. Indian Soc. Periodontol. 2022, 26, 451. [Google Scholar] [CrossRef]
- Ozcelik, O.; Haytac, M.C.; Seydaoglu, G. Enamel matrix derivative and low-level laser therapy in the treatment of intra-bony defects: A randomized placebo-controlled clinical trial. J. Clin. Periodontol. 2008, 35, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Torkzaban, P.; Barati, I.; Faradmal, J.; Ansari-moghadam, S.; Gholami, L. View of Efficacy of the Er,Cr:YSGG Laser Application Versus the Conventional Method in Periodontal Flap Surgery: A Split-Mouth Randomized Control Trial. Available online: https://journals.sbmu.ac.ir/jlms/article/view/34822/28650 (accessed on 22 February 2024).
- Sanz-Moliner, J.D.; Nart, J.; Cohen, R.E.; Ciancio, S.G. The Effect of an 810-nm Diode Laser on Postoperative Pain and Tissue Response After Modified Widman Flap Surgery: A Pilot Study in Humans. J. Periodontol. 2013, 84, 152–158. [Google Scholar] [CrossRef]
- Shetty, S.; Shetty, K.; Alghamdi, S.; Almehmadi, N.; Mukherjee, T. A comparative evaluation of laser assisted & conventional open flap surgical debridement procedure in Patients with chronic periodontitis—A clinical and microbiological study—A pilot project. Int. J. Pharm. Sci. Res. 2020, 11, 4957. [Google Scholar] [CrossRef]
- Türer, Ç.C.; Ipek, H.; Kirtiloğlu, T.; Açikgöz, G. Dimensional changes in free gingival grafts: Scalpel versus Er:YAG laser—A preliminary study. Lasers Med. Sci. 2015, 30, 543–548. [Google Scholar] [CrossRef]
- Zingale, J.; Harpenau, L.; Chambers, D.; Lundergan, W. Effectiveness of Root Planing with Diode Laser Curettage for the Treatment of Periodontitis. J. Calif. Dent. Assoc. 2012, 40, 787–793. [Google Scholar] [CrossRef]
- Kreisler, M.; AlHaj, H.; Daubländer, M.; Gtz, H.; Duschner, H.; Willershausen, B.; D’HOedt, B. Effect of diode laser irradiation on root surfaces in vitro. J. Clin. Laser Med. Surg. 2002, 20, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Romanos, G.; Nentwig, G.H. Diode laser (980 nm) in oral and maxillofacial surgical procedures: Clinical observations based on clinical applications. J. Clin. Laser Med. Surg. 1999, 17, 193–197. [Google Scholar] [CrossRef]
- Folwaczny, M.; Mehl, A.; Haffner, C.; Benz, C.; Hickel, R. Root substance removal with Er:YAG laser radiation at different parameters using a new delivery system. J. Periodontol. 2000, 71, 147–155. [Google Scholar] [CrossRef]
- Sasaki, K.M.; Aoki, A.; Ichinose, S.; Ishikawa, I. Morphological analysis of cementum and root dentin after Er:YAG laser irradiation. Lasers Surg. Med. 2002, 31, 79–85. [Google Scholar] [CrossRef]
- Theodoro, L.H.; Sampaio, J.E.C.; Haypek, P.; Bachmann, L.; Zezell, D.M.; Garcia, V.G. Effect of Er:YAG and Diode lasers on the adhesion of blood components and on the morphology of irradiated root surfaces. J. Periodontal. Res. 2006, 41, 381–390. [Google Scholar] [CrossRef]
- Fujii, T.; Baehni, P.C.; Kawai, O.; Kawakami, T.; Matsuda, K.; Kowashi, Y. Scanning Electron Microscopic Study of the Effects of Er:YAG Laser on Root Cementum. J. Periodontol. 1998, 69, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Aoki, A.; Becker, J.; Sculean, A. Laser application in non-surgical periodontal therapy: A systematic review. J. Clin. Periodontol. 2008, 35, 29–44. [Google Scholar] [CrossRef]
- Mizutani, K.; Aoki, A.; Takasaki, A.A.; Kinoshita, A.; Hayashi, C.; Oda, S.; Ishikawa, I. Periodontal tissue healing following flap surgery using an Er:YAG laser in dogs. Lasers Surg. Med. 2006, 38, 314–324. [Google Scholar] [CrossRef]
- Schwarz, F.; Aoki, A.; Sculean, A.; Georg, T.; Scherbaum, W.; Becker, J. In vivo effects of an Er:YAG laser, an ultrasonic system and scaling and root planing on the biocompatibility of periodontally diseased root surfaces in cultures of human PDL fibroblasts. Lasers Surg. Med. 2003, 33, 140–147. [Google Scholar] [CrossRef]
- Feist, I.S.; De Micheli, G.; Carneiro, S.R.S.; Eduardo, C.P.; Miyagi, S.P.H.; Marques, M.M. Adhesion and growth of cultured human gingival fibroblasts on periodontally involved root surfaces treated by Er:YAG laser. J. Periodontol. 2003, 74, 1368–1375. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Jepsen, S.; Herten, M.; Aoki, A.; Sculean, A.; Becker, J. Immunohistochemical characterization of periodontal wound healing following nonsurgical treatment with fluorescence controlled Er:YAG laser radiation in dogs. Lasers Surg. Med. 2007, 39, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H.; Aoki, A.; Sasaki, K.M.; Takasaki, A.A.; Iwasaki, K.; Ichinose, S.; Oda, S.; Ishikawa, I.; Izumi, Y. The effect of chemical and/or mechanical conditioning on the Er:YAG laser-treated root cementum: Analysis of surface morphology and periodontal ligament fibroblast attachment. Lasers Surg. Med. 2008, 40, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Perussi, L.R.; Pavone, C.; De Oliveira, G.J.P.L.; Cerri, P.S.; Marcantonio, R.A.C. Effects of the Er,Cr:YSGG laser on bone and soft tissue in a rat model. Lasers Med. Sci. 2012, 27, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Cortellini, P.S. Minimally Invasive Surgical Technique and Modified-MIST in Periodontal Regeneration. In Minimally Invasive Periodontal Therapy: Clinical Techniques and Visualization Technology; Wiley: New York, NY, USA, 2015; pp. 117–142. [Google Scholar] [CrossRef]
Reference | Type of Laser | Clinical Findings | Laser Parameters | Last Follow-Up |
---|---|---|---|---|
[38] | Diode | Improved clinical parameters for laser group | 810 nm, 1 W, 4 J/cm2 | 9 months |
[39] | Diode | Similar findings between test and control groups | No data, wavelength, 1.5 W | 6 months |
[40] | CO2 | Improved clinical parameters for laser group | No data | 15 years |
[41] | Nd:YAG | Improved clinical parameters for control group | 1064 nm, 1 W, 10 Hz, | 6 months |
[42] | Er:YAG | Similar findings between test and control groups | 2940 nm 2 Hz, 60 mJ/pulse | 6 months |
[43] | Nd:YAG | Similar findings between test and control groups | 1064 nm 1 W, 10 Hz, 100 mJ, 141.54 J/cm2 | 12 months |
[44] | Nd:YAG | Improved clinical parameters for laser group | 1064 nm, 100 mW, 10 Hz, 100 mJ, 4 J/cm2 | 6 months |
[45,46] | Diode | Initially improved results for test group, followed by results similar to both groups | 660 nm | 6 months + 2 years |
[47] | Diode | Improved clinical parameters for laser group | 980 nm, 2.5 W, 50 J/cm2 | 3 months |
[48] | Diode | Improved clinical parameters for laser group | 970 nm, 7 W, 50 J/cm2 | 6 months |
[49] | Diode | Improved clinical parameters for laser group | 980 nm, 2 W | 6 months |
[50] | Diode | Improved clinical parameters for laser group | 588 nm, 4 J/cm2 | 12 months |
[51] | Er,Cr:YSGG | Similar findings between test and control groups | 2780 nm, 25–50 Hz, 2–3.5 W | 3 months |
[52] | Diode | Improved clinical parameters for laser group | 810 nm, 1 W, 4 J/cm2 | 1 week |
[53] | Diode | Improved clinical parameters for laser group | 980 nm, 2.5 W | 6 months |
[54] | Er:YAG | Similar findings between test and control groups | 2940 nm 3 W, 300 mJ, 10 Hz, 1000 μs/1.20 W, 120 mJ, 10 Hz, and 100 μs | 3 months |
[55] | Diode | Improved aesthetic parameters for laser group | 810 nm, 0.8 W | 6 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zisis, S.; Zisis, V.; Braun, A. Evaluating the Efficacy of Various Laser Types in Periodontal Treatment: A Narrative Review. Oral 2025, 5, 49. https://doi.org/10.3390/oral5030049
Zisis S, Zisis V, Braun A. Evaluating the Efficacy of Various Laser Types in Periodontal Treatment: A Narrative Review. Oral. 2025; 5(3):49. https://doi.org/10.3390/oral5030049
Chicago/Turabian StyleZisis, Stefanos, Vasileios Zisis, and Andreas Braun. 2025. "Evaluating the Efficacy of Various Laser Types in Periodontal Treatment: A Narrative Review" Oral 5, no. 3: 49. https://doi.org/10.3390/oral5030049
APA StyleZisis, S., Zisis, V., & Braun, A. (2025). Evaluating the Efficacy of Various Laser Types in Periodontal Treatment: A Narrative Review. Oral, 5(3), 49. https://doi.org/10.3390/oral5030049