Removal of Fe3+ Ions from Aqueous Solutions by Adsorption on Natural Eco-Friendly Brazilian Palygorskites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Batch Kinetic Experiments
2.3. Adsorption Procedure
2.4. Characterization of Materials
2.4.1. Mineralogical and Chemical Characterization
2.4.2. SEM/EDS
2.4.3. FTIR
2.4.4. TGA/DTA
2.4.5. Size Distribution and Surface Charge
2.4.6. Hydrophobicity
2.4.7. Density Measurement by He Pycnometry and BET Surface Area Analysis
2.4.8. SQUID Magnetometry
SQUID Cryogenic S600 magnetometer
2.4.9. AFM
3. Results and Discussion
3.1. XRD Studies
3.1.1. Quartz Concentration Reduction of Raw Palys
3.1.2. Mineralogical Analysis
3.2. Characterization of Palys before and after Fe3+ Adsorption (Palys-Fe3+)
3.2.1. XRF
3.2.2. Microtexture Studies—SEM
3.2.3. SEM/EDS Mappings—Mg Distribution
3.2.4. Particle Size Distribution
3.2.5. SQUID—Magnetic Properties
3.2.6. FTIR Analysis
3.2.7. Thermal Stability
3.2.8. Surface Charge—Hydrophobicity
3.3. Adsorption Studies: Evaluation of Fe3+ Adsorption on Five Paly Surfaces
3.3.1. Adsorption Kinetics
3.3.2. Adsorption Isotherm
3.4. Additional Characterizations of Paly III (BET Surface Area Analysis/AFM)
BET—AFM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostroski, I.C.; Barros, M.A.S.D.; Silva, E.A.; Dantas, J.H.; Arroyo, P.A.; Lima, C.O.M. The Removal of Fe (III) Ions by Adsorption onto Zeolite Columns. Adsorpt. Sci. Technol. 2007, 25, 757–768. [Google Scholar] [CrossRef]
- Aksu, Z. Application of biosorption for the removal of organic pollutants: A review. Process Biochem. 2005, 40, 997–1026. [Google Scholar] [CrossRef]
- Sheibani, A.; Shishehbor, M.R.; Alaei, H. Removal of Fe (III) ions from aqueous solution by hazelnut hull as an adsorbent. Int. J. Ind. Chem. 2012, 3, 4. [Google Scholar] [CrossRef]
- Liang, X.; Xu, Y.; Tan, X.; Wang, L.; Sun, Y.; Lin, D.; Sun, Y.; Qin, X.; Wang, Q. Heavy metal adsorbents mercapto and amino functionalized palygorskite: Preparation and characterization. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 426, 98–105. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Eissa, F.I.; Ghanem, K.M.; El-Din, H.M.G.; Al Anamy, F.S. Heavy metals removal from aqueous solutions and wastewaters by using various byproducts. J. Environ. Manag. 2013, 128, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.; Li, M.; Wang, F.; Liu, X. Removal of Fe3+ from Aqueous Solution by Natural Apatite. J. Surf. Eng. Mater. Adv. Technol. 2014, 4, 14–20. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, T.; Liu, H.; Xu, B.; Xie, J. Kinetics and thermodynamics of Eu (III) and U (VI) adsorption onto palygorskite. J. Mol. Liq. 2016, 219, 272–278. [Google Scholar] [CrossRef]
- Al-Anber, Z.A.; Al-Anber, M.A.S. Thermodynamics and Kinetic Studies of Iron (III) Adsorption by Olive Cake in a Batch System. J. Mex. Chem. Soc. 2008, 52, 108–115. Available online: https://www.jmcs.org.mx/index.php/jmcs/article/view/1055/867 (accessed on 14 July 2022).
- Middea, A.; Fernandes, T.L.A.P.; Neumann, R.; Gomes, O.F.M.; Spinelli, L.S. Evaluation of Fe (III) adsorption onto palygorskite surfaces. Appl. Surf. Sci. 2013, 282, 253–258. [Google Scholar] [CrossRef]
- Perlatti, F.; Ruiz, F.; Otero, X.L.; Ferreira, T.O. Adsorption and Sequential Extraction of Copper in Technosols Prepared from Unconsolidated Mining Wastes Rich in Limestone, Bentonite, and Organic Matter. Mining 2023, 3, 151–162. [Google Scholar] [CrossRef]
- Hassanin, M.A.; Negm, S.H.; Youssef, M.A.; Sakr, A.K.; Mira, H.I.; Mohammaden, T.F.; Al-Otaibi, J.S.; Hanfi, M.Y.; Sayyed, M.I.; Cheira, M.F. Sustainable Remedy Waste to Generate SiO2 Functionalized on Graphene Oxide for Removal of U(VI) Ions. Sustainability 2022, 14, 2699. [Google Scholar] [CrossRef]
- Xuan, G.X.; Zhang, G.H.; Cheng, W.C.; Ma, C.Y.; Li, Q.R.; Liu, E.T.; He, W.G.; Dong, F.Q.; Li, X.A.; Chen, Z.G.; et al. Uranium Speciation and Distribution on the Surface of Shewanella Putrefaciens in the Presence of Inorganic Phosphate and Zero-Valent Iron under Anaerobic Conditions. Sci. Total Environ. 2024, 912, 169438. [Google Scholar] [CrossRef]
- Murray, H.H. Traditional and new applications for kaolin, smectite and palygorskite: A general overview. Appl. Clay Sci. 2000, 17, 207–221. [Google Scholar] [CrossRef]
- Neaman, A.; Singer, A. Possible use of the Sacalum (Yucatan) palygorskite as drilling muds. Appl. Clay Sci. 2004, 25, 121–124. [Google Scholar] [CrossRef]
- Neaman, A.; Singer, A. The effects of palygorskite on chemical and physico-chemical properties of soils: A review. Geoderma 2004, 123, 297–303. [Google Scholar] [CrossRef]
- Deng, Y.; Gao, Z.; Liu, B.; Hu, X.; Wei, Z.; Sun, C. Selective removal of lead from aqueous solutions by ethylenediamine-modified attapulgite. Chem. Eng. J. 2013, 223, 91–98. [Google Scholar] [CrossRef]
- Bourliva, A.; Sikalidis, A.K.; Papadopoulou, L.; Betsiou, M.; Michailidis, K.; Sikalidis, C.; Filippidis, A. Removal of Cu2+ and Ni2+ ions from aqueous solutions by adsorption onto natural palygorskite and vermiculite. Clay Miner. 2018, 53, 1–15. [Google Scholar] [CrossRef]
- Suárez, M.; García-Rivas, J.; Morales, J.; Lorenzo, A.; García-Vicente, A.; García-Romero, E. Review and new data on the surface properties of palygorskite: A comparative study. Appl. Clay Sci. 2022, 216, 106311. [Google Scholar] [CrossRef]
- Bailey, S.W. Structures of Layer Silicates. In Crystal Structures of Clay Minerals and their X-ray Identification; Brindley, G.W., Brown, G., Eds.; Mineralogical Society of Great Britain and Ireland: Twickenham, UK, 1980; pp. 1–123. [Google Scholar] [CrossRef]
- Yan, W.; Liu, D.; Tan, D.; Yuan, P.; Chen, M. FTIR spectroscopy study of the structure changes of palygorskite under heating. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 97, 1052–1057. [Google Scholar] [CrossRef]
- Fraser, M.B.; Churchman, G.J.; Chittleborough, D.J.; Rengasamy, P. Effect of plant growth on the occurrence and stability of palygorskite, sepiolite and saponite in salt-affected soils on limestone in South Australia. Appl. Clay Sci. 2016, 124–125, 183–196. [Google Scholar] [CrossRef]
- Oliveira, A.M.B.M.; Coelho, L.F.O.; Gomes, S.S.S.; Costa, I.F.; Fonseca, M.G.; Souza, K.S.; Espínolo, J.G.P.; Filho, E.C.S. Brazilian palygorskite as adsorbent for metal; ions from aqueous solution—Kinetic and equilibrium studies. Water Air Soil Pollut. 2013, 224, 1687. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Acchar, W.; Soares, G.D.A.; Barreto, L.S. The increase of surface area of a Brazilian palygorskite clay activated with sulfuric acid solutions using a factorial design. Mater. Res. 2013, 16, 924–928. [Google Scholar] [CrossRef]
- Xavier, K.C.M.; Santos, M.S.F.; Osajima, J.A.; Luz, A.B.; Fonseca, M.G.; Filho, E.C.S. Thermally activated palygorskites as agents to clarify soybean oil. Appl. Clay Sci. 2016, 119, 338–347. [Google Scholar] [CrossRef]
- Assis, T.C.; Cerqueda, M.; Souza, C.G.; Jesus, T.C.; Marçano, G.B.; Simões, K.M.A.; Rodrigues, P.V.; Furlanetto, R.P.P.; Anjos, N.O.A.; Nascimento, L.C.S.; et al. Comparative Analysis of Palygorskite Samples From Different Occurrences in Guadalupe (Piauí, Brazil). J. Aerosp. Technol. Manag. 2019, 11, 62–65. [Google Scholar] [CrossRef]
- Souza, C.G.; Jesus, T.C.L.; Santos, R.C.; Bomfim, L.M.; Bertolino, L.C.; Andrade, D.F.; d’Avila, L.A.; Spinelli, L.S. Characterization of Brazilian palygorskite (Guadalupe region) and adsorptive behaviour for solvatochromic dyes. Clay Miner. 2021, 56, 55–64. [Google Scholar] [CrossRef]
- Meirelles, L.M.A.; Barbosa, R.d.M.; Sanchez-Espejo, R.; García-Villén, F.; Perioli, L.; Viseras, C.; Moura, T.F.A.d.L.e.; Raffin, F.N. Investigation into Brazilian Palygorskite for Its Potential Use as Pharmaceutical Excipient: Perspectives and Applications. Materials 2023, 16, 4962. [Google Scholar] [CrossRef] [PubMed]
- Carretero, M.I.; Pozo, M. Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Appl. Clay Sci. 2010, 47, 171–181. [Google Scholar] [CrossRef]
- Celik, H. Technological characterization and industrial application of two Turkish clays for the ceramic industry. Appl. Clay Sci. 2010, 50, 245–254. [Google Scholar] [CrossRef]
- Li, W.; Adams, A.; Wang, J.; Blümich, B.; Yang, Y. Polyethylene/palygorskite nanocomposites: Preparation by in situ polymerization and their characterization. Polymer 2010, 51, 4686–4697. [Google Scholar] [CrossRef]
- Abdo, J.; Haneef, M.D. Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells. Appl. Clay Sci. 2013, 86, 76–82. [Google Scholar] [CrossRef]
- Soares, D.S.; Fernandes, C.S.; Costa, A.C.S.; Raffin, F.N.; Acchar, W.; Moura, T.F.A.L. Characterization of palygorskite clay from Piauí, Brazil and its potential use as excipient for solid dosage forms containing anti-tuberculosis drugs. J. Therm. Anal. Calorim. 2013, 113, 551–558. [Google Scholar] [CrossRef]
- Middea, A.; Spinelli, L.S.; Souza Junior, F.G.; Neumann, R.; Gomes, O.F.M.; Fernandes, T.L.A.P.; Lima, L.C.; Barthem, V.M.T.S.; Carvalho, F.V. Synthesis and characterization of magnetic palygorskite nanoparticles and their application on methylene blue remotion from water. Appl. Surf. Sci. 2015, 346, 232–239. [Google Scholar] [CrossRef]
- Oliveira, M.E.R.; Santos, L.M.; Silva, M.L.G.; Cunha, H.N.; Filho, E.C.S.; Leite, C.M.S. Preparation and characterization of composite polyaniline/poly(vinyl alcohol)/palygorskite. J. Therm. Anal. Calorim. 2015, 119, 37–46. [Google Scholar] [CrossRef]
- Zhongwei, L.; Pengxiang, L.; Zigong, N.; Yang, X.; Chengzhi, W.; Yunkai, L. A modified attapulgite clay for controlling infiltration of reclaimed water riverbed. Environ. Earth Sci. 2015, 73, 3887–3900. [Google Scholar] [CrossRef]
- Morozov, I.A.; Garishin, O.K.; Shadrin, V.V.; Gerasin, V.A.; Guseva, M.A. Atomic force microscopy of structural-mechanical properties of polyethylene reinforced by silicate needle-shaped filler. Adv. Mater. Sci. Eng. 2016, 2016, 8945978. [Google Scholar] [CrossRef]
- Eloussaief, M.; Kallel, N.; Yaacoubi, A.; Benzina, M. Mineralogical identification, spectroscopic characterization, and potential environmental use of natural clay materials on chromate removal from aqueous solutions. Chem. Eng. J. 2011, 168, 1024–1031. [Google Scholar] [CrossRef]
- He, M.; Zhu, Y.; Yang, Y.; Han, B.; Zhang, Y. Adsorption of cobalt (II) ions from aqueous solutions by palygorskite. Appl. Clay Sci. 2011, 54, 292–296. [Google Scholar] [CrossRef]
- Guo, N.; Wang, J.S.; Li, J.; Teng, Y.G.; Zhai, Y.Z. Dynamic adsorption of Cd2+ onto acid-modified attapulgite from aqueous solution. Clays Clay Miner. 2014, 62, 415–424. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Wang, A. Effects of solvothermal process on the physicochemical and adsorption characteristics of palygorskite. Appl. Clay Sci. 2015, 107, 230–237. [Google Scholar] [CrossRef]
- Post, J.L.; Crawford, S. Varied forms of palygorskite and sepiolite from different geologic systems. Appl. Clay Sci. 2007, 36, 232–244. [Google Scholar] [CrossRef]
- Xie, Q.; Chen, T.; Zhou, H.; Xu, X.; Xu, H.; Ji, J.; Lu, H.; Balsam, W. Mechanism of palygorskite formation in the red clay formation on the Chinese loess plateau, northwest China. Geoderma 2013, 192, 39–49. [Google Scholar] [CrossRef]
- Nasedkin, V.V.; Vasiliev, A.L.; Boeva, N.M.; Belousov, P.E. Geology, mineralogy, and genesis of palygorskite clay from Borshchevka deposit in the Kaluga region and outlook for its technological use. Geol. Ore Depos. 2014, 56, 208–227. [Google Scholar] [CrossRef]
- Mehdilo, A.; Irannajad, M.; Hojjati-rad, M.R. Characterization and beneficiation of iranian low-grade manganese ore. Physicochem. Probl. Miner. Process. 2013, 49, 725–741. [Google Scholar] [CrossRef]
- Passe-Coutrin, N.; Altenor, S.; Cossement, D.; Jean-Marius, C.; Gaspard, S. Comparison of parameters calculated from the BET and Freundlich isotherms obtained by nitrogen adsorption on activated carbons: A new method for calculating the specific surface area. Microporous Mesoporous Mater. 2008, 111, 517–522. [Google Scholar] [CrossRef]
- García-Romero, E.; Suárez, M.; Santarén, J.; Alvaréz, A. Crystallochemical characterization of the palygorskite and sepiolite from the Allou Kagne deposit, Senegal. Clays Clay Miner. 2007, 55, 606–617. [Google Scholar] [CrossRef]
- Presciutti, F.; Capitani, D.; Sgamellotti, A.; Brunetti, B.G.; Costantino, F.; Viel, S.; Segre, A. Electron paramagnetic resonance, scanning electron microscopy with energy dispersion x-ray spectrometry, X-ray powder diffraction, and NMR characterization of iron-rich fired clays. J. Phys. Chem. B 2005, 109, 22147–22158. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak, E.A.; Alsecz, A.; Frost, R.; Máthé, Z.; Sajó, I.E.; Török, S.; Worobiec, A.; Grieken, R.V. Combined SEM/EDX and micro-Raman spectroscopy analysis of uranium minerals from a former uranium mine. J. Hazard. Mater. 2009, 168, 416–423. [Google Scholar] [CrossRef]
- Worobiec, A.; Vermaak, S.P.; Brooker, A.; Darchuk, L.; Stefaniak, E.; Grieken, R.V. Interfaced SEM/EDX and micro-Raman Spectrometry for characterization of heterogeneous environmental particles—Fundamental and practical challenges. Microchem. J. 2010, 94, 65–72. [Google Scholar] [CrossRef]
- Yang, F.; Sun, S.; Chen, X.; Chang, Y.; Zha, F.; Lei, Z. Mg-Al layered double hydroxides modified clay adsorbents for efficient removal of Pb2+, Cu2+ and Ni2+ from water. Appl. Clay Sci. 2016, 123, 134–140. [Google Scholar] [CrossRef]
- Schuette, R.; Goodman, B.A.; Stucki, J.W. Magnetic properties of oxidized and reduced smectites. Phys. Chem. Miner. 2000, 27, 251–257. [Google Scholar] [CrossRef]
- Mashlan, M.; Bartonkova, H.; Jancik, D.; Tucek, J.; Martinec, P. Iron oxide modified minerals. Hyperfine Interact. 2009, 191, 151–157. [Google Scholar] [CrossRef]
- Suárez, M.; García-Romero, E. FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet. Appl. Clay Sci. 2006, 31, 154–163. [Google Scholar] [CrossRef]
- Cheng, H.; Frost, R.L.; Yang, J.; Liu, Q.; He, J. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 77, 1014–1020. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, W.; Wang, W.; Wang, Q.; Hui, A.; Wang, A. A comparative study of different natural palygorskite clays for fabricating cost-efficient and eco-friendly iron red composite pigments. Appl. Clay Sci. 2019, 167, 50–59. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Li, C.; Zhen, W.; Wang, S.; Huang, S. Effects of modified palygorskite on performance, crystallization and rheology of polyphenylene sulfide. Appl. Clay Sci. 2023, 240, 106967. [Google Scholar] [CrossRef]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Alkan, M.; Tekin, G.; Namli, H. FTIR and zeta potential measurements of sepiolite treated with some organosilanes. Microporous Mesoporous Mater. 2005, 84, 75–83. [Google Scholar] [CrossRef]
- Bashir, S.; McCabe, R.W.; Boxall, C.; Leaver, M.S.; Mobbs, D. Synthesis of α- and β-FeOOH iron oxide nanoparticles in non-ionic surfactant medium. J. Nanoparticle Res. 2009, 11, 701–706. [Google Scholar] [CrossRef]
- Cheng, H.; Yang, J.; Frost, R.L.; Wu, Z. Infrared transmission and emission spectroscopic study of selected Chinese palygorskites. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 83, 518–524. [Google Scholar] [CrossRef]
- Lazarevié, S.; Jankovié-Castvan, I.; Djokié, V.; Radovanovié, Z.; Janaékovié, D.; Petrovié, R. Iron-modified sepiolite for Ni2+ sorption from aqueous solution: An equilibrium, kinetic, and thermodynamic study. J. Chem. Eng. Data 2010, 55, 5681–5689. [Google Scholar] [CrossRef]
- Liu, Q.; Yao, X.; Cheng, H.; Frost, R.L. An infrared spectroscopic comparison of four Chinese palygorskites. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 96, 784–789. [Google Scholar] [CrossRef]
- Liu, H.; Chen, T.; Chang, D.; Chen, D.; Qing, C.; Xie, J.; Frost, R.L. The difference of thermal stability between Fe-substituted palygorskite and Al-rich palygorskite. J. Therm. Anal. Calorim. 2013, 111, 409–415. [Google Scholar] [CrossRef]
- Middea, A.; Spinelli, L.S.; Souza Jr, F.G.; Neumann, R.; Fernandes, T.L.A.P.; Gomes, O.F.M. Preparation and characterization of an organo-palygorskite-Fe3O4 nanomaterial for removal of anionic dyes from wastewater. Appl. Clay Sci. 2017, 139, 45–53. [Google Scholar] [CrossRef]
- Song, X.; Hao, Y.; Gao, Q.; Cheng, L. Preparation and performance of magnetic zirconium-iron oxide nanoparticles loaded on palygorskite in the adsorption of phosphate from water. Quim. Nova 2022, 45, 1214–1222. [Google Scholar] [CrossRef]
- Boudriche, L.; Calvet, R.; Hamdi, B.; Balard, H. Surface properties evolution of attapulgite by IGC analysis as a function of thermal treatment. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 399, 1–10. [Google Scholar] [CrossRef]
- Ogorodova, L.; Vigasina, M.; Melchakova, L.; Krupskaya, V.; Kiseleva, I. Thermochemical study of natural magnesium aluminum phyllosilicate: Palygorskite. J. Chem. Thermodyn. 2015, 89, 205–211. [Google Scholar] [CrossRef]
- Silva, V.C.; Araújo, M.E.B.; Rodrigues, A.M.; Vitorino, M.B.C.; Cartaxo, J.M.; Menezes, R.R.; Neves, G.A. Adsorption Behavior of Crystal Violet and Congo Red Dyes on Heat-Treated Brazilian Palygorskite: Kinetic, Isothermal and Thermodynamic Studies. Materials 2021, 14, 5688. [Google Scholar] [CrossRef] [PubMed]
- Middea, A.; Spinelli, L.S.; Souza Junior, F.G.; Neumann, R.; Fernandes, T.; Faulstich, F.R.L.; Gomes, O. Magnetic polystyrene–palygorskite nanocomposite obtained by heterogeneous phase polymerization to apply in the treatment of oily waters. J. Appl. Polym. Sci. 2018, 135, 46162. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, Z.; Han, F. Effects of pH on the gel properties of montmorillonite, palygorskite and montmorillonite-palygorskite composite clay. Appl. Clay Sci. 2020, 190, 105543. [Google Scholar] [CrossRef]
- Subrahmanyam, T.V.; Monte, M.B.M.; Middea, A.; Valdiviezo, E.; Lins, F.F. Contact angles of quartz by capillary penetration of liquids and captive bubble techniques. Miner. Eng. 1999, 12, 1347–1357. [Google Scholar] [CrossRef]
- Giles, C.H.; MacEwan, S.N.; Nakhwa, S.N.; Smith, D. Studies in Adsorption: Part XI. A System of Classification of Solution Adsorption Isotherms and Its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface AREAS of solids. J. Chem. Soc. 1960, 14, 3973–3993. [Google Scholar] [CrossRef]
- Al-Futaisi, A.; Jamrah, A.; Al-Rawas, A.; Al-Hanai, S. Adsorption capacity and mineralogical and physico-chemical characteristics of Shuwaymiyah palygorskite (Oman). Environ. Geol. 2007, 51, 1317–1327. [Google Scholar] [CrossRef]
- He, J.; Hong, S.; Zhang, L.; Gan, F.; Ho, Y.S. Equilibrium and thermodynamic parameters of adsorption of methylene blue onto rectorite. Fresenius Environ. Bull. 2010, 19, 2651–2656. Available online: http://dns2.asia.edu.tw/~ysho/YSHO-English/Publications/PDF/Fre%20Env%20Bul19,%202651.pdf (accessed on 25 May 2022).
- Cychosz, K.A.; Thommes, M. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
Oxides (%) | Paly I | Paly II | Paly III | Paly IV | Paly V | |||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | Before | After | |
SiO2 | 51.0 | 45.4 | 52.7 | 47.5 | 50.7 | 44.9 | 49.3 | 43.8 | 50.3 | 44.3 |
MgO | 3.7 | 3.7 | 3.5 | 3.3 | 4.1 | 4.1 | 3.4 | 3.4 | 2.7 | 2.6 |
Al2O3 | 13.1 | 11.2 | 15.7 | 11.9 | 16.4 | 12.7 | 17.2 | 13.1 | 17.8 | 13.8 |
Fe2O3 | 9.8 | 15.3 | 8.4 | 14.6 | 8.3 | 14.2 | 8.5 | 14.5 | 10.2 | 16.1 |
TiO2 | 1.1 | 1.1 | 1.2 | 1.2 | 1.7 | 0.8 | 1.1 | 1.0 | 1.0 | 1.1 |
K2O | 1.6 | 1.6 | 1.3 | 1.3 | 1.2 | 1.2 | 1.6 | 1.6 | 1.1 | 1.1 |
LOI * | 19.7 | 21.7 | 17.2 | 20.2 | 17.6 | 22.1 | 18.9 | 22.6 | 16.9 | 21.0 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Elements (%) | Paly I | Paly II | Paly III | Paly IV | Paly V | |||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | Before | After | |
O | 43.6 | 50.7 | 40.9 | 47.8 | 45.2 | 46.5 | 39.5 | 49.0 | 40.7 | 49.9 |
Si | 30.1 | 22.4 | 31.6 | 22.9 | 26.9 | 24.7 | 31.9 | 24.4 | 30.2 | 21.9 |
Mg | 3.9 | 2.0 | 3.6 | 2.4 | 4.0 | 2.3 | 3.6 | 1.7 | 2.5 | 2.5 |
Al | 9.1 | 6.9 | 10.6 | 7.3 | 10.2 | 7.3 | 12.4 | 6.7 | 12.1 | 6.5 |
Fe | 8.4 | 14.3 | 7.1 | 15.2 | 7.2 | 14.8 | 7.1 | 13.3 | 8.5 | 14.2 |
Ti | 0.7 | 0.5 | 0.8 | 1.2 | 1.3 | 1.1 | 1.0 | 0.6 | 0.7 | 0.9 |
K | 4.2 | 3.2 | 5.4 | 3,2 | 5.2 | 3.3 | 4.5 | 4.3 | 5.3 | 4.1 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Palys | Event 1 (°C)/Mass Loss (%) | Event 2 (°C)/Mass Loss (%) | Event 3 (°C)/Mass Loss (%) | Total Mass Loss (%) | ||||
---|---|---|---|---|---|---|---|---|
Paly | Paly-Fe3+ | Paly | Paly-Fe3+ | Paly | Paly-Fe3+ | Paly | Paly-Fe3+ | |
Paly I | 37.6/9.7 | 83.4/12.6 | 191.9/2.3 | 246.5/5.8 | 454.2/4.4 | 495.7/2.8 | 16.4 | 21.2 |
Paly II | 35.2/5.3 | 74.8/13.2 | 190.7/2.8 | 237.9/7.4 | 467.6/7.5 | 487.1/2.8 | 15.6 | 23.4 |
Paly III | 69.1/9.6 | 72.4/11.1 | 189.3/2.5 | 221.3/6.1 | 472.4/3.6 | 478.9/2.3 | 15.7 | 19.5 |
Paly IV | 42.6/6.2 | 56.3/10.8 | 190.2/2.7 | 229.7/7.1 | 466.3/7.4 | 480.7/2.7 | 16.3 | 20.6 |
Paly V | 41.3/6.8 | 77.1/8.3 | 190.5/2.3 | 238.4/8.2 | 475.4/5.5 | 482.9/2.3 | 14.6 | 18.8 |
Palys Sample | R2 | 1/KΓm (g/L) | 1/Γm (mg/g) | K (L/mol) | ΔG (KJ/mol) |
---|---|---|---|---|---|
Paly I | 0.9939 | 44.500 | 0.0138 | 50.39 | −9.71 |
Paly II | 0.9935 | 52.000 | 0.0135 | 42.19 | −9.27 |
Paly III | 0.9986 | 27.345 | 0.0152 | 90.33 | −11.16 |
Paly IV | 0.9980 | 59.050 | 0.0135 | 37.15 | −8.96 |
Paly V | 0.9943 | 62.745 | 0.0132 | 34.19 | −8.75 |
Paly | BET Single Point a | BET | Langmuir | t-Plot Micropore | t-Plot External | BJH Adsorption b | BJH Desorption b |
---|---|---|---|---|---|---|---|
Paly III | 106.65 | 108.87 | 148.79 | 25.89 | 82.98 | 91.27 | 102.41 |
Paly III-Fe3+ | 98.74 | 102.40 | 141.64 | 7.42 | 94.98 | 117.15 | 117.51 |
Paly | Single Point Adsorption | Single Point Desorption | t-Plot Micropore | BJH Adsorption c | BJH Desorption c |
---|---|---|---|---|---|
Paly III | 0.2098 a | 0.2187 b | 0.01097 | 0.2164 | 0.2212 |
Paly III-Fe3+ | 0.2163 d | 0.2181 e | 0.002416 | 0.2257 | 0.2068 |
Paly | Adsorption a | Desorption a | BJH Adsorption b | BJH Desorption b |
---|---|---|---|---|
Paly III | 77.09 | 80.34 | 94.84 | 86.42 |
Paly III-Fe3+ | 84.51 | 85.18 | 77.08 | 70.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Middea, A.; Spinelli, L.d.S.; de Souza Junior, F.G.; Fernandes, T.d.L.A.P.; de Lima, L.C.; Barthem, V.M.T.S.; Gomes, O.d.F.M.; Neumann, R. Removal of Fe3+ Ions from Aqueous Solutions by Adsorption on Natural Eco-Friendly Brazilian Palygorskites. Mining 2024, 4, 37-57. https://doi.org/10.3390/mining4010004
Middea A, Spinelli LdS, de Souza Junior FG, Fernandes TdLAP, de Lima LC, Barthem VMTS, Gomes OdFM, Neumann R. Removal of Fe3+ Ions from Aqueous Solutions by Adsorption on Natural Eco-Friendly Brazilian Palygorskites. Mining. 2024; 4(1):37-57. https://doi.org/10.3390/mining4010004
Chicago/Turabian StyleMiddea, Antonieta, Luciana dos Santos Spinelli, Fernando Gomes de Souza Junior, Thais de Lima Alves Pinheiro Fernandes, Luiz Carlos de Lima, Vitoria Maria Tupinamba Souza Barthem, Otávio da Fonseca Martins Gomes, and Reiner Neumann. 2024. "Removal of Fe3+ Ions from Aqueous Solutions by Adsorption on Natural Eco-Friendly Brazilian Palygorskites" Mining 4, no. 1: 37-57. https://doi.org/10.3390/mining4010004
APA StyleMiddea, A., Spinelli, L. d. S., de Souza Junior, F. G., Fernandes, T. d. L. A. P., de Lima, L. C., Barthem, V. M. T. S., Gomes, O. d. F. M., & Neumann, R. (2024). Removal of Fe3+ Ions from Aqueous Solutions by Adsorption on Natural Eco-Friendly Brazilian Palygorskites. Mining, 4(1), 37-57. https://doi.org/10.3390/mining4010004