Minimum Cost Pathfinding Algorithm for the Determination of Optimal Paths under Airflow Constraints
Abstract
:1. Introduction
2. Materials and Methods
Algorithm 1 A* Search Algorithm Pseudocode |
|
2.1. Cost Function Determination for Flow-Constrained Paths
2.2. Validation of the Modified A* Algorithm
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuipers, B.; Feigenbaum, E.A.; Hart, P.E.; Nilsson, N.J. Shakey: From conception to history. AI Mag. 2017, 38, 88–103. [Google Scholar] [CrossRef]
- Lozano-Pérez, T.; Wesley, M.A. An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 1979, 22, 560–570. [Google Scholar] [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Ghaffari, A. An energy efficient routing protocol for wireless sensor networks using A-star algorithm. J. Appl. Res. Technol. 2014, 12, 815–822. [Google Scholar] [CrossRef]
- Nosrati, M.; Karimi, R.; Hasanvand, H.A. Investigation of the *(star) search algorithms: Characteristics, method and approaches. World Appl. Program. 2012, 2, 251–256. [Google Scholar]
- Zhang, Z.; Wu, J.; Dai, J.; He, C. Optimal path planning with modified A-Star algorithm for stealth unmanned aerial vehicles in 3D network radar environment. Proc. Inst. Mechancial Eng. Part G J. Aerosp. Eng. 2022, 236, 72–81. [Google Scholar] [CrossRef]
- Liu, C.; Mao, Q.; Chu, X.; Xie, S. An Improved A-Star Algorithm Considering Water Current, Traffic Separation and Berthing for Vessel Path Planning. Appl. Sci. 2019, 9, 1057. [Google Scholar] [CrossRef]
- Zheng, S.; Luo, L.; Xiao, Y. Global Path Planning for USV Using A-Star Algorithm with Modified Heuristic Function. In Proceedings of the 2024 IEEE 4th International Conference on Power, Eelctronics and Computer Applications (ICPECA), Shenyang, China, 26–28 January 2024. [Google Scholar] [CrossRef]
- Marzieh Bagheri, S.; Taghaddos, H.; Mousaie, A.; Shahnavaz, F.; Hermann, U. An A-Star algorithm for semi-optimization of crane location and configuration in modular construction. Autom. Constr. 2020, 121, 103447. [Google Scholar] [CrossRef]
- Veisei, O.; Du, D.; Moradi, M.A.; Guasselli, F.G.; Athanasoulias, S.; Syed, H.A.; Müller, C.; Stevens, G. Desiging SafeMap Based on City Infrastructure and Empirical Approach: Modified A-star Algorithm for Earthquake Navigation Application. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on Advances in Urban-AI, Hamburg, Germany, 13 November 2023; pp. 61–70. [Google Scholar] [CrossRef]
- Yu, J.; Hou, J.; Chen, G. Improved Safety-First A-Star Algorithm for Autonomous Vehicles. In Proceedings of the 5th International Conference on Advanced Robotics and Mechatronics (ICARM), Shenzhen, China, 18–21 December 2020. [Google Scholar] [CrossRef]
- Stewart, C.; Aminossadati, S.M.; Kizil, M.S. Emergency egress pathway prediction using ventilaiton models. In Proceedings of the 4th Austrialian Mine Ventilation Conference, Brisbane, Australia, 28–30 August 2017; pp. 57–62. [Google Scholar]
- Dijkstra, E.W. A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra: His Life, Work, and Legacy; Apt, K.R., Hoare, T., Eds.; Morgan & Claypool: San Raphael, CA, USA, 2022; pp. 287–290. [Google Scholar]
- McPherson, M.J. Ventilation network analysis. In Subsurface Ventilation and Environmental Engineering; Springer: New York, NY, USA, 1993; pp. 209–240. [Google Scholar]
- Wei, L.J. Topology theory of mine ventilation network. Procedia Earth Planet. Sci. 2009, 1, 354–360. [Google Scholar] [CrossRef]
- Jha, A.K. Ventilation Network Analysis. In Selection of Main Mechanical Ventilators for Coal Mines; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Huang, R.; Shen, X.; Wang, B.; Liao, X. Migration characteristics of CO under forced ventilation after excavation roadway blasting: A case study in a plateau mine. J. Clean. Prod. 2020, 267, 122094. [Google Scholar] [CrossRef]
- Ren, T.; Wang, Z. CFD Modelling of Ventilation, Dust and Gas Flow Dispersion Patterns on a Longwall Face. In Proceedings of the 11th International Mine Ventilation Congress, Xi’an, China, 14–20 September 2018; pp. 198–208. [Google Scholar] [CrossRef]
- Xie, C.; Xiong, G.; Chen, Z. Using CFD to Simulate Concentration of Polluting and Harmful Gases in the Roadway of Non-Metallic Mines Reveals Its Migration Law. Sustainability 2022, 14, 13349. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Applying computational fluid dynamics in research on ventilation safety during underground hard coal mining: A systematic literature review. Process Saf. Environ. Prot. 2021, 151, 373–400. [Google Scholar] [CrossRef]
- Kavuri, C.; Kokjohn, S.L. Exploring the potential of machine learning in reducing the computational time/expense and improving the reliability of engine optimization studies. Int. J. Engine Res. 2020, 21, 1251–1270. [Google Scholar] [CrossRef]
- Mirzaei, P. CFD modeling of micro and urban climates: Problems to be solved in the new decade. Sustain. Cities Soc. 2021, 69, 102839. [Google Scholar] [CrossRef]
- Lange, C.; Barthelmäs, P.; Rosnitschek, T.; Tremmel, S.; Rieg, F. Impact of HPC and Automated CFD Simulation Processes on Virtual Product Development—A Case Study. Appl. Sci. 2021, 11, 6552. [Google Scholar] [CrossRef]
- Brown Requist, K.W.; Lutz, E.; Momayez, M. Near real-time interpolative algorithm for modelling air quality in underground mines. J. South. Afr. Inst. Min. Metall. 2024, 124, 153–162. [Google Scholar]
- Boisvert, J.B.; Deutsch, C.V. Kriging in the Presence of LVA Using Dijkstra’s Algorithm. 2008. Available online: https://www.ccgalberta.com/ccgresources/report10/2008-110_lva_kriging_dijkstra.pdf (accessed on 24 April 2024).
- Boisvert, J.B.; Manchuk, J.G.; Deutsch, C.V. Kriging in the Presence of Locally Varying Anisotropy Using Non-Euclidean Distances. Math. Geosci. 2009, 41, 585–601. [Google Scholar]
- Umeda, S.; Yang, W.J. Interaction of von Karman vortices and intersecting main streams in staggered tube bundles. Exp. Fluids 1999, 26, 389–396. [Google Scholar] [CrossRef]
- Karode, S.K.; Kumar, A. Flow visualization through spacer filled channels by computational fluid dynamics I: Pressure drop and shear rate calculations for flat sheet geometry. J. Membr. Sci. 2001, 193, 90–95. [Google Scholar] [CrossRef]
- Prasad, R.K. Pressure transient analysis in the presence of two intersecting boundaries. J. Pet. Technol. 1975, 27, 89–96. [Google Scholar] [CrossRef]
- McPherson, M.J. Incompressible flow relationships. 1993. In Subsurface Ventilation and Environmental Engineering; Springer: New York, NY, USA, 1993; pp. 134–174. [Google Scholar]
- Andreopoulos, J.; Wood, D. The response of a turbulent boundary layer to a short length of surface roughness. J. Fluid Mech. 1982, 118, 143–164. [Google Scholar] [CrossRef]
- Krogstadt, P.Å.; Antonia, R.A. Surface roughness effects in turbulent boundary layers. Exp. Fluids 1999, 27, 450–460. [Google Scholar] [CrossRef]
- Tuck, E.; Kouzoubov, A. A laminar roughness boundary condition. J. Fluid Mech. 1995, 300, 59–70. [Google Scholar] [CrossRef]
- Antonia, R.A.; Luxton, R.E. The response of a turbulent boundary layer to a step change in surface roughness. Part 2. Rough-to-smooth. J. Fluid Mech. 1972, 53, 737–757. [Google Scholar] [CrossRef]
- Raupach, M.R. Conditional statistics of Reynolds stress in rough-wall and smooth-wall turburlent boundary layers. J. Fluid Mech. 1981, 108, 363–382. [Google Scholar] [CrossRef]
- Watson, C.; Marshall, J.A. Towards Extracting Absolute Roughness from Underground Mine Drift Profile Data. 2015. Available online: https://qspace.library.queensu.ca/handle/1974/14116 (accessed on 22 June 2023).
- Zhang, H.; Falk, L.; Allen, C. An Application of Computational Fluid Dynamics to Predict Schock Loss Factors at Raise Junctions in Underground Mine Ventilation Systems. Min. Metall. Explor. 2024, 41, 1155–1170. [Google Scholar] [CrossRef]
- Levin, L.Y.; Semin, M.A. Influence of Schock Losses on Air Distribution in Underground Mines. J. Min. Sci. 2019, 55, 287–296. [Google Scholar] [CrossRef]
- Li, K.; Ramandi, H.L.; Zhang, C.; Saydam, S.; Oh, J.; Saydam, S. Exploring the capabilities of portable device photogrammetry for 3D surface roughness evaluation. Int. J. Min. Reclam. Environ. 2023, 37, 630–647. [Google Scholar] [CrossRef]
- Gao, K.; Qi, Z.; Liu, Y.; Zhang, J. Calculation model for ventilation friction resistance coefficient by surrounding rock roughness distribution characteristics of mine tunnel. Sci. Rep. 2022, 12, 3193. [Google Scholar] [CrossRef]
- McElroy, G.E. Engineering Factors in the Ventilation of Metal Mines; US Government Printing Office: Washington, DC, USA, 1935; p. 43. [Google Scholar]
- Korf, R.E. Recent progress in the design and analysis of admissible heuristic functions. In Proceedings of the Abstraction, Reformulation, and Approximation: 4th International Symposium, SARA 2000, Horseshoe Bay, TX, USA, 26–29 July 2000; pp. 45–55. [Google Scholar]
- Yuan, L.; Zhou, L.; Smith, A.C. Modeling carbon monoxide spread in underground mine fires. Appl. Therm. Eng. 2016, 100, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Goodman, G.; Martikainen, A. Computational fluid dynamics (CFD) investigation of impacts of an obstruction on airflow in underground mines. Trans. Soc. Min. Met. Explor. Inc. 2013, 332, 505–513. [Google Scholar] [PubMed]
- Chang, P.; Xu, G.; Huang, J. Numerical study on DPM dispersion and distribution in an underground development face based on dynamic mesh. Int. J. Min. Sci. Technol. 2020, 30, 471–475. [Google Scholar] [CrossRef]
- Mora, L.; Gadgil, A.J.; Wurtz, E.; Inard, C. Comparing Zonal and CFD Model Predictions of Indoor Airflows under Mixed Convection Conditions to Experimental Data. In Proceedings of the 3rd European Conference on Energy Performance and Indoor Climate in Buildings, Lyon, France, 23–26 October 2002. [Google Scholar]
Emitter Airway Number | Success Rates | ||
---|---|---|---|
Least Resistance | Total Cost | Path Length | |
403 | 0.647 | 0.824 | 00.824 |
516 | 0.526 | 0.737 | 0.789 |
393 | 0.647 | 0.706 | 0.824 |
369 | 0.688 | 0.750 | 0.875 |
323 | 0.667 | 0.800 | 0.933 |
472 | 0.647 | 0.824 | 0.882 |
499 | 0.647 | 0.824 | 0.882 |
371 | 0.688 | 0.813 | 0.938 |
360 | 0.667 | 0.800 | 0.933 |
367 | 0.647 | 0.824 | 0.882 |
Mean | 0.647 | 0.790 | 0.876 |
Standard Deviation | 0.043 | 0.041 | 0.048 |
Emitter Airway Number | Success Rates | ||
---|---|---|---|
Least Resistance | Total Cost | Path Length | |
403 | 0.450 | 0.800 | 0.150 |
516 | 0.450 | 0.750 | 0.450 |
393 | 0.450 | 0.700 | 0.200 |
369 | 0.400 | 0.700 | 0.250 |
323 | 0.250 | 0.750 | 0.250 |
472 | 0.350 | 0.800 | 0.150 |
499 | 0.350 | 0.800 | 0.150 |
371 | 0.300 | 0.750 | 0.250 |
360 | 0.250 | 0.750 | 0.250 |
367 | 0.450 | 0.800 | 0.250 |
Mean | 0.370 | 0.760 | 0.235 |
Standard Deviation | 0.078 | 0.037 | 0.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown Requist, K.; Momayez, M. Minimum Cost Pathfinding Algorithm for the Determination of Optimal Paths under Airflow Constraints. Mining 2024, 4, 429-446. https://doi.org/10.3390/mining4020025
Brown Requist K, Momayez M. Minimum Cost Pathfinding Algorithm for the Determination of Optimal Paths under Airflow Constraints. Mining. 2024; 4(2):429-446. https://doi.org/10.3390/mining4020025
Chicago/Turabian StyleBrown Requist, Kate, and Moe Momayez. 2024. "Minimum Cost Pathfinding Algorithm for the Determination of Optimal Paths under Airflow Constraints" Mining 4, no. 2: 429-446. https://doi.org/10.3390/mining4020025
APA StyleBrown Requist, K., & Momayez, M. (2024). Minimum Cost Pathfinding Algorithm for the Determination of Optimal Paths under Airflow Constraints. Mining, 4(2), 429-446. https://doi.org/10.3390/mining4020025