Potential Impact of Primary Lithium Produced in Brazil on Global Warming
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Trends in Electric Vehicle Batteries. 2024. Available online: https://www.iea.org/reports/global-ev-outlook-2024/trends-in-electric-vehicle-batteries (accessed on 2 May 2025).
- Paes, V.J.d.C.; Marques, E.D.; Gomes, D.G.d.C.; Silva, M.A.d.; Marinho, M.d.S.; Di Salvio, L.P.P.; Nobrega, M.; Santos, E.A.M.d.; Martins, L.A. O “Projeto Avaliação Do Potencial Do Lítio No Brasil” Na Província Pegmatítica Oriental Do Brasil. 2023. Available online: https://rigeo.cprm.gov.br/jspui/bitstream/doc/23949/3/Informe_Tecnico_19.pdf (accessed on 3 July 2024).
- Vieira, G.L.G.; Almeida, M.H.M. Lítio e o Potencial Geológico das Jazidas do Norte de Minas Gerais. Portal Ambiente Legal. 27 June 2023. Available online: https://www.ambientelegal.com.br/litio-e-o-potencial-geologico-das-jazidas-do-norte-de-minas-gerais/ (accessed on 3 November 2024).
- Jiang, S.; Zhang, L.; Li, F.; Hua, H.; Liu, X.; Yuan, Z.; Wu, H. Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment. J. Env. Manag. 2020, 262, 110253. [Google Scholar] [CrossRef] [PubMed]
- Manjong, N.B.; Usai, L.; Burheim, O.S.; Strømman, A.H. Life cycle modelling of extraction and processing of battery minerals—A parametric approach. Batteries 2021, 7, 57. [Google Scholar] [CrossRef]
- Khakmardan, S.; Li, W.; Giurco, D.; Crawford, R. Life cycle assessment of lithium carbonate production: Comparing sedimentary deposits. J. Clean. Prod. 2024, 467, 142955. [Google Scholar] [CrossRef]
- Khakmardan, S.; Rolinck, M.; Cerdas, F.; Herrmann, C.; Giurco, D.; Crawford, R.; Li, W. Comparative Life Cycle Assessment of Lithium Mining, Extraction, and Refining Technologies: A Global Perspective. Procedia CIRP. 2023, 116, 606–611. [Google Scholar] [CrossRef]
- Calvo, G.; Mudd, G.; Valero, A.; Valero, A. Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality? Resources 2016, 5, 36. [Google Scholar] [CrossRef]
- Mudd, G.M.; Jowitt, S.M. A Detailed Assessment of Global Nickel Resource Trends and Endowments. Econ. Geol. 2014, 109, 1813–1841. [Google Scholar] [CrossRef]
- Northey, S.; Mohr, S.; Mudd, G.M.; Weng, Z.; Giurco, D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 2014, 83, 190–201. [Google Scholar] [CrossRef]
- Durucan, S.; Korre, A.; Munoz-Melendez, G. Mining life cycle modelling: A cradle-to-gate approach to environmental management in the minerals industry. J. Clean. Prod. 2006, 14, 1057–1070. [Google Scholar] [CrossRef]
- Fraunhofer-UMSICHT. LCA of Battery-Grade Lithium. Available online: https://www.umsicht.fraunhofer.de/en/press-media/press-releases/2023/lca-of-battery-grade-lithium.html (accessed on 14 June 2023).
- Valikandi, E.M.; Choi, Y. Utilization of solar and wind power-generation systems in the mining industry: Recent trends and future prospects. J. Sustain. Mining. 2024, 23, 388–396. [Google Scholar] [CrossRef]
- de Oliveira, M.L.; Heider, M. Caracterização da Indústria Extrativa do Lítio no Brasil. IV Seminário Brasileiro Sobre Lítio. 2024. Available online: https://www.gov.br/cetem/pt-br/iv-seminario-litio-brasil/apresentacoes/mariano-laio-e-mathias-heider-anm.pdf (accessed on 1 August 2024).
- ANM. Anuário Mineral Brasileiro Interativo. Anuário Mineral Brasileiro-Interativo. 2024. Available online: https://www.gov.br/anm/pt-br/assuntos/economia-mineral/producao-mineral (accessed on 1 August 2024).
- SGB-Serviço Geológico do Brasil. Seminário Transformação Mineral CBL. 18 March 2024. Available online: https://www.youtube.com/watch?v=R6YXvRWjvNM (accessed on 5 June 2024).
- CBL. CBL-Companhia Brasileira de Lítio. Página Institucional. 6 June 2024. Available online: https://www.cblitio.com.br/ (accessed on 5 June 2024).
- Silva, M.E.M.; Ferreira, I.O.; Carvalho, W.R.; Fernandes, M.M.; Chaves, M.A.; Soares, H.S. Diagnóstico Do Setor Mineral de Minas Gerais. 2022. Available online: https://www.desenvolvimento.mg.gov.br/assets/projetos/1081/38eb30bbc2960d6b339fb38a60ff66cd.pdf (accessed on 27 June 2024).
- IBRAM. Portifólio de Associados. 2024. Available online: https://ibram.org.br/wp-content/uploads/2023/11/MIOLO-Portfolio_dos_Associados_Pimenta-Avila_atualizado_sumario_compressed.pdf (accessed on 27 June 2024).
- CETEM-Centro de Tecnologia Mineral. IV-Seminário Sobre Lítio. 17 April 2024. Available online: https://www.youtube.com/watch?v=Eniekv_pqVY (accessed on 27 June 2024).
- AMG. Critical Materials for a Sustainable Planet. 2022. Available online: https://www.amg-nv.com (accessed on 30 June 2024).
- AMG Brasil. AMG Brasil. 2024. Available online: https://amg-br.com/pt/ (accessed on 30 June 2024).
- Brasil, M. As maiores empresas do setor mineral-AMG. Bras. Mineral 2023, 431, 1–196. Available online: https://www.brasilmineral.com.br/maiores/amg#:~:text=A%20unidade%20de%20Minerais%20Cr%C3%ADticos,de%20resid%C3%AAncia%20no%20circuito%20cleaner%E2%80%9D (accessed on 30 June 2024).
- IEAT/UFMG. Workshop Lítio UFMG 2019. 25 April 2019. Available online: https://www.youtube.com/watch?v=XoZy0dBnLy0 (accessed on 30 June 2024).
- Pereira, N.T.L.; Pereira, M.G.; Marcos, E.M. Relatório de Avaliação de Desempenho Ambiental-RADA–Mina Volta Grande. 2014. Available online: https://www.siam.mg.gov.br/siam/lc/2014/0004319850342014/1817072014.pdf (accessed on 14 June 2024).
- Soares, J.C.M.L. Efeito Da Granulometria Da Alimentação Na Flotação de Espodumênio. Diss. Mestr. Profissional. Univ. Fed. Minas Gerais 2021. Available online: https://repositorio.ufmg.br/handle/1843/37027 (accessed on 30 July 2024).
- AMG. AMG Reports First Quarter 2024 Results: Lithium Projects on Schedule-AMG Corporate. 2024. Available online: https://amg-nv.com/investors/press-release/amg-reports-first-quarter-2024-results-lithium-projects-on-schedule/ (accessed on 2 October 2024).
- Delboni, H., Jr.; Laporte, M.A.; Quinn, J.; O’Brien, N. Grota Do Cirilo Lithium Project-NI 43-101 Technical Report. 2023. Available online: https://minedocs.com/19/Grota-do-Cirilo-Xuxa-FS-Barreiro-PFS-5302022.pdf (accessed on 30 June 2024).
- Lithium Royalty Corp. Annual Information Form. 27 March 2024. Available online: https://s202.q4cdn.com/970544872/files/doc_downloads/2024/03/2024_Annual-Information-Form_vFINAL.pdf (accessed on 31 October 2024).
- SEMAD. Parecer n.7/Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável-MG/SUPPRI/DAT/2023. 2023. Available online: https://goias.gov.br/meioambiente/wp-content/uploads/sites/33/2021/04/in_07_23_Semad-bc4.pdf (accessed on 20 September 2024).
- Sigma Lithium. Sigma Lithium Receives Binding Commitment from BNDES for a BRL 487 Million, 16-Year Loan to Fully Fund Second Greentech Carbon Neutral Plant in Brazil. 2024. Available online: https://sigmalithiumresources.com/sigma-lithium-receives-binding-commitment-from-bndes-for-a-brl-487-million-16-year-loan-to-fully-fund-second-greentech-carbon-neutral-plant-in-brazil/ (accessed on 2 October 2024).
- Governo do Estado de Minas Gerais. Lithium Valley: De minério Para Bateria. Governo de Minas Gerais-Lithium Valley. 2023. Available online: https://www.agenciaminas.mg.gov.br/noticia/governo-de-minas-realiza-lancamento-mundial-do-projeto-vale-do-litio (accessed on 11 September 2024).
- Atlas Lithium. Minas Gerais Lithium Project-Atlas Lithium Corporation. 2024. Available online: https://www.atlas-lithium.com/projects/minas-gerais-lithium-project/ (accessed on 2 October 2024).
- Cesar, M. Latin Resources Projeto Salinas Lithium. IV Seminário Sobre Lítio. March 2024. Available online: https://www.gov.br/cetem/pt-br/iv-seminario-litio-brasil/apresentacoes/marisa-cesar-projeto-salinas-lithium.pdf (accessed on 3 October 2024).
- Henrique, T. Lithium Ionic Deve Investir US$ 266 Milhões em Projeto de Lítio em Minas Gerais. Diário do Comércio. 4 June 2024. Available online: https://diariodocomercio.com.br/economia/litio-lithium-ionic-deve-investir-minas-gerais/#gref (accessed on 3 October 2024).
- Latin Resources. Salinas Lithium Project, Brazil • Latin Resources. 2024. Available online: https://minedocs.com/28/Latin-Resources-Quarterly-Report-12312024.pdf (accessed on 3 October 2024).
- Lithium Ionic. Lithium Ionic. 2024. Available online: https://pt.lithiumionic.com/ (accessed on 3 October 2024).
- Mineração & Sustentabilidade. Produção da Atlas Lithium Deve Começar no Fim do Ano. 2024. Available online: https://revistamineracao.com.br/2024/01/03/producao-atlas-lithium-vale-litio-deve-comecar-fim-do-ano/ (accessed on 3 October 2024).
- ANM. Apuração de Municípios Afetados-2023. Agência Nacional de Mineração. 2024. Available online: https://www.gov.br/anm/pt-br/assuntos/arrecadacao/apuracao-municipios-afetados-1/apuracao-municipios-afetados-por-ano-1/apuracao-de-municipios-afetados-2023/ (accessed on 1 August 2024).
- SEMAD. Parecer n.10/Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável-MG/ /SEMAD/SUPRAM JEQUIT-DRRA/2021. 2021. Available online: https://sistemas.meioambiente.mg.gov.br/licenciamento/uploads/k4-mqzfdjUgE1d5pluW-V2PwKlUVv_22.pdf (accessed on 13 October 2024).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.D.M.; Hollander, A.; Zijp, M.; van Zelm, R. ReCiPe 2016-A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization. 2017. Available online: https://www.rivm.nl/en/life-cycle-assessment-lca/recipe (accessed on 2 July 2024).
- IPCC. Climate Change, 2nd ed.; Houghton, J.T., Jenkins, G.J., Ephraums, J.J., Eds.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- USGS. U.S. Geological Survey-Mineral Commodity Summaries 2024-Lithium. January 2024. Available online: https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-lithium.pdf (accessed on 4 August 2024).
- ECOINVENT. Ecoinvent Version 3.10. Available online: https://support.ecoinvent.org/ecoinvent-version-3.10 (accessed on 6 August 2024).
- Mérieux NutriSciences. Agri-Footprint. Available online: https://blonksustainability.nl/agri-footprint (accessed on 8 August 2024).
- Buendia, C.; Kranjc, K.; Fukuda, J.; Osako, N.S.; Shermanau, Y.; Federici, P. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy Edited by Task Force on National Greenhouse Gas Inventories. 2019. Available online: www.ipcc-nggip.iges.or.jp (accessed on 11 March 2020).
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 3 February 2021).
- EPE-Empresa de Pesquisa Energética. Balanço Energético Nacional-Manual Metodológico-Nota Técnica EPE DEA 005/2021. 2021. Available online: http://www.epe.gov.br (accessed on 20 March 2022).
- GHG Protocol. Emissões de CO2 pela detonação de explosivos industriais–versão 1.0. FGV-EAESP. 2016. Available online: https://repositorio.fgv.br/server/api/core/bitstreams/799c8378-e0e8-4318-8625-e1bc31cc5562/content (accessed on 21 June 2022).
- Conexão Mineral. Mina de Manganês Eletrifica Suas Operações Com Equipamentos Epiroc Movidos a Bateria. 2022. Available online: https://www.conexaomineral.com.br/noticia/2745/mina-de-manganes-eletrifica-suas-operacoes-com-equipamentos-epiroc-movidos-a-bateria.html (accessed on 2 October 2024).
- de Vilhena Costa, L.; da Silva, J.M. Benefícios na utilização da frota elétrica para ventilação de mina subterrânea. Tecnol. Metal. Mater. E Min. 2021, 18, e2359. [Google Scholar] [CrossRef]
- Ratcliffe, M.; Mahoney, P.; Stanway, G. State of Play: Electrification. 2020. Available online: https://stateofplay.org/download/state-of-play-electrification-report-2021/ (accessed on 2 October 2024).
- State of Play. Powering the Future: The Electrification Evolution in Mining. State of Play (NGO). 2024. Available online: https://stateofplay.org/news-articles/powering-the-future-the-electrification-evolution-in-mining/ (accessed on 2 October 2024).
- Yao, K.A.F.; Yao, B.K.; Belcourt, O.; Salze, D.; Lasm, T.; Lopez-Ferber, M.; Junqua, G. Mining Impacts Assessment Using the LCA Methodology: Case Study of Afema Gold Mine in Ivory Coast. Integr. Environ. Assess. Manag. 2021, 17, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.; Freire, F.; Ribeiro, J. Life-cycle assessment of a civil explosive. J. Clean. Prod. 2015, 89, 159–164. [Google Scholar] [CrossRef]
- YARA International ASA. Low-Carbon Footprint Ammonium Nitrate. 2024. Available online: https://www.yara.com/industrial-nitrogen/civil-explosives/low-carbon-footprint-ammonium-nitrate/ (accessed on 9 September 2024).
- Armijo, J.; Philibert, C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina. Int. J. Hydrog. Energy 2020, 45, 1541–1558. [Google Scholar] [CrossRef]
- Enaex. First to Produce Carbon-Neutral Ammonium Nitrate in Latin America. 2024. Available online: https://www.enaex.com/era/en/carbon-neutral-ammonium-nitrate/ (accessed on 9 September 2024).
- Rasul, K.; Hertwich, E.G. Decomposition Analysis of the Carbon Footprint of Primary Metals. Environ. Sci. Technol. 2023, 57, 7391–7400. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, R.; Watari, T.; Motoshita, M. Future greenhouse gas emissions from metal production: Gaps and opportunities towards climate goals. Energy Environ. Sci. 2022, 15, 146–157. [Google Scholar] [CrossRef]
- Chordia, M.; Wickerts, S.; Nordelöf, A.; Arvidsson, R. Life cycle environmental impacts of current and future battery-grade lithium supply from brine and spodumene. Resour. Conserv. Recycl. 2022, 187, 106634. [Google Scholar] [CrossRef]
- Mas-Fons, A.; Horta Arduin, R.; Loubet, P.; Pereira, T.; Parvez, A.M.; Sonnemann, G. Carbon and water footprint of battery-grade lithium from brine and spodumene: A simulation-based LCA. J. Clean. Prod. 2024, 452, 142108. [Google Scholar] [CrossRef]
- Delevingne, L.; Glazener, W.; Grégoir, L.; Henderson, K. Climate risk and decarbonization: What Every Mining CEO Needs to Know. January 2020. Available online: https://www.mckinsey.com/capabilities/sustainability/our-insights/climate-risk-and-decarbonization-what-every-mining-ceo-needs-to-know (accessed on 31 October 2024).
Output | Value |
---|---|
LCE (t) | 1 |
Inputs from ecosphere | |
river water (m3) | 7.24 |
well water (m3) | 1.64 × 10−3 |
land use (ha year) | 1.39 |
oxygen (kg) | 3.09 × 10−2 |
Inputs from technosphere | |
diesel (kg) | 6.64 × 101 |
natural gas (m3) | 1.69 × 101 |
argon (kg) | 2.63 × 10−1 |
lubricating oil (kg) | 3.01 × 10−1 |
ammonium nitrate (kg) | 1.71 × 102 |
diesel (kg) | 1.09 × 101 |
FeSi (t) | 1.59 × 10−2 |
soda ash (kg) | 1.33 × 10−2 |
pallets (units) | 2.30 × 10−1 |
electricity (MWh) | 1.30 |
Air emissions | |
CO2 (kg) | 2.38 × 102 |
CH4 (kg) | 1.16 × 10−2 |
N2O (kg) | 8.03 × 10−2 |
NOx (kg) | 4.21 × 101 |
particulates (kg) | 1.18 |
SOx (kg) | 2.11 × 10−1 |
hydrocarbons (kg) | 1.01 |
Final waste flows | |
overburden (t) | 6.06 × 102 |
tailings (t) | 2.52 × 101 |
hazardous waste (kg) | 3.60 × 101 |
non-hazardous waste (kg) | 2.89 × 10−1 |
inert waste (kg) | 5.73 × 101 |
oil waste (t) | 3.63 × 10−2 |
sewage waste (t) | 5.04 × 10−2 |
light bulb waste (kg) | 9.19 × 10−3 |
plastic packaging waste (kg) | 3.45 × 10−3 |
copper waste (kg) | 2.30 × 10−3 |
other metal waste (kg) | 3.45 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, M.; Braga, P.F.A.; Soares, P.S.M. Potential Impact of Primary Lithium Produced in Brazil on Global Warming. Mining 2025, 5, 45. https://doi.org/10.3390/mining5030045
Nascimento M, Braga PFA, Soares PSM. Potential Impact of Primary Lithium Produced in Brazil on Global Warming. Mining. 2025; 5(3):45. https://doi.org/10.3390/mining5030045
Chicago/Turabian StyleNascimento, Marisa, Paulo Fernando Almeida Braga, and Paulo Sergio Moreira Soares. 2025. "Potential Impact of Primary Lithium Produced in Brazil on Global Warming" Mining 5, no. 3: 45. https://doi.org/10.3390/mining5030045
APA StyleNascimento, M., Braga, P. F. A., & Soares, P. S. M. (2025). Potential Impact of Primary Lithium Produced in Brazil on Global Warming. Mining, 5(3), 45. https://doi.org/10.3390/mining5030045