Next Issue
Volume 6, December
Previous Issue
Volume 6, June
 
 

Solids, Volume 6, Issue 3 (September 2025) – 24 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
30 pages, 6891 KB  
Article
Transient Response of an Infinite Isotropic Magneto-Electro-Elastic Material with Multiple Axisymmetric Planar Cracks
by Alireza Vahdati, Mehdi Salehi, Meisam Vahabi, Aazam Ghassemi, Javad Jafari Fesharaki and Soheil Oveissi
Solids 2025, 6(3), 54; https://doi.org/10.3390/solids6030054 - 22 Sep 2025
Abstract
Dynamic behavior of coaxial axisymmetric planar cracks in the transversely isotropic magneto-electro-elastic (MEE) material in transient in-plane magneto-electro-mechanical loading is studied. Magneto-electrically impermeable as well as permeable cracks are assumed for crack surfaces. In the first step, considering prismatic and radial dynamic dislocations, [...] Read more.
Dynamic behavior of coaxial axisymmetric planar cracks in the transversely isotropic magneto-electro-elastic (MEE) material in transient in-plane magneto-electro-mechanical loading is studied. Magneto-electrically impermeable as well as permeable cracks are assumed for crack surfaces. In the first step, considering prismatic and radial dynamic dislocations, electric and magnetic jumps are obtained through Laplace and Hankel transforms. These solutions are utilized to derive singular integral equations in the Laplace domain for the axisymmetric penny-shaped and annular cracks. Derived Cauchy singular type integral equations are solved to obtain the density of dislocation on the crack surfaces. Dislocation densities are utilized in computation of the dynamic stress intensity factors, electric displacement, and magnetic induction in the vicinity tips of crack tips. Finally, some numerical case studies of single and multiple cracks are presented. The effect of system parameters on the results is then discussed. Full article
Show Figures

Figure 1

14 pages, 3848 KB  
Article
Low-Temperature Synthesis and Photoluminescence Properties of Mg2TiO4:Mn4+ Phosphor Prepared by Solid-State Reaction Methods Assisted by LiCl Flux
by Chenxing Liao, Huihuang Cai, Dongyuan Dai and Liaolin Zhang
Solids 2025, 6(3), 53; https://doi.org/10.3390/solids6030053 - 11 Sep 2025
Viewed by 276
Abstract
Mg2TiO4:Mn4+ (MTO:Mn4+) red phosphor has important applications in areas such as red LEDs and forensic science, but the preparation of MTO:Mn4+ through the solid-state reaction method requires a high sintering temperature. Herein, MTO:Mn4+ red [...] Read more.
Mg2TiO4:Mn4+ (MTO:Mn4+) red phosphor has important applications in areas such as red LEDs and forensic science, but the preparation of MTO:Mn4+ through the solid-state reaction method requires a high sintering temperature. Herein, MTO:Mn4+ red phosphor was synthesized using the solid-state reaction method with LiCl flux, and its crystallographic structure and photoluminescence properties were studied to determine the influence of experimental parameters like the amount of fluxing agent added and sintering temperature in producing a bright red phosphor suitable for LEDs. The experimental results showed that samples with added LiCl could form pure MTO after sintering at 950 °C, whereas those without LiCl still contained a mixture of MTO and MgTiO3, even when sintered at 1400 °C. The optimal performance was achieved with a sample doped with 0.2 mol% Mn4+, synthesized using 50 wt% LiCl flux and sintered at 950 °C for 12 h. This sample exhibited a broad excitation band and a narrow red emission band peaking at 662 nm, confirming its excellent luminescence properties. Furthermore, a prototype red LED fabricated with a 377 nm chip and MTO:0.2% Mn4+ phosphor achieved photoelectric conversion efficiency of 78.5% at a 100 mA drive current, confirming its viability for high-performance red LED manufacturing. Full article
Show Figures

Graphical abstract

76 pages, 13574 KB  
Review
Luminescence Properties of Defects in GaN: Solved and Unsolved Problems
by Michael A. Reshchikov
Solids 2025, 6(3), 52; https://doi.org/10.3390/solids6030052 - 10 Sep 2025
Viewed by 726
Abstract
Gallium Nitride (GaN) is a wide-bandgap semiconductor that has revolutionized optoelectronic applications, enabling blue/white light-emitting devices and high-power electronics. Point defects in GaN strongly influence its optical and electronic properties, producing both beneficial and detrimental effects. This review provides a comprehensive update on [...] Read more.
Gallium Nitride (GaN) is a wide-bandgap semiconductor that has revolutionized optoelectronic applications, enabling blue/white light-emitting devices and high-power electronics. Point defects in GaN strongly influence its optical and electronic properties, producing both beneficial and detrimental effects. This review provides a comprehensive update on the current understanding of point defects in GaN and their impact on photoluminescence (PL). Since our earlier review (Reshchikov and Morkoç, J. Appl. Phys. 2005, 97, 061301), substantial progress has been made in this field. PL bands associated with major intrinsic and extrinsic defects in GaN are now much better understood, and several defects in undoped GaN (arising from unintentional impurities or specific growth conditions) have been identified. Notably, the long-debated origin of the yellow luminescence band in GaN has been resolved, and the roles of Ga and N vacancies in the optical properties of GaN have been revised. Zero-phonon lines have been discovered for several defects. Key parameters, such as electron- and hole-capture coefficients, phonon energies, electron–phonon coupling strength, thermodynamic charge transition levels, and the presence of excited states, have been determined or refined. Despite these advances, several puzzles associated with PL remain unsolved, highlighting areas for future investigation. Full article
Show Figures

Graphical abstract

11 pages, 966 KB  
Article
Improved Laser Cooling Efficiencies of Rare-Earth-Doped Semiconductors Using a Photonic-Crystal Nanocavity
by Yuta Nakayama, Masayuki Ogawa, Jun Tatebayashi, Yukihiro Harada, Yasufumi Fujiwara and Takashi Kita
Solids 2025, 6(3), 51; https://doi.org/10.3390/solids6030051 - 5 Sep 2025
Viewed by 349
Abstract
We theoretically studied the control of the extraction of anti-Stokes photoluminescence using photonic crystal (PhC) nanocavities. Our fabricated (erbium,oxygen)-codoped GaAs PhC nanocavity showed a positive feedback gain of heating through the excitation of the GaAs host, which suggests the possibility of higher laser-cooling [...] Read more.
We theoretically studied the control of the extraction of anti-Stokes photoluminescence using photonic crystal (PhC) nanocavities. Our fabricated (erbium,oxygen)-codoped GaAs PhC nanocavity showed a positive feedback gain of heating through the excitation of the GaAs host, which suggests the possibility of higher laser-cooling efficiencies at lower temperatures in such systems. Based on this result, we constructed a theoretical framework of laser cooling in PhC nanocavities. The predicted laser cooling efficiency of a PhC nanocavity is six to eight times higher than that of the corresponding bulk system, and we predict that more than 24% can be achieved at 100 K using holmium-doped materials. Full article
Show Figures

Figure 1

17 pages, 2901 KB  
Article
Preliminary Modeling of Single Pulp Fiber Using an Improved Mass–Spring Method
by Yin Liu, Wenhao Shen, Douglas W. Coffin, Tao Song, Jean-Francis Bloch and Jean-Pierre Corriou
Solids 2025, 6(3), 50; https://doi.org/10.3390/solids6030050 - 3 Sep 2025
Viewed by 359
Abstract
An improved Mass–Spring Model (iMSM) is developed by adding central springs to the conventional Mass–Spring Models (MSMs) of tubular structures. This improvement is necessary to model fibers that have enough stiffness so that they do not collapse under transverse loading. Such is the [...] Read more.
An improved Mass–Spring Model (iMSM) is developed by adding central springs to the conventional Mass–Spring Models (MSMs) of tubular structures. This improvement is necessary to model fibers that have enough stiffness so that they do not collapse under transverse loading. Such is the case with many pulp fibers used in papermaking. Four different types of pulp fibers (Aspen CTMP, Aspen BCTMP, Birch BCTMP, and Spruce BKP) were simulated in the study. A geometric model and iMSM of a single fiber were developed, in which the topological structure of iMSM is explained in detail. The mass of mass points and the elastic coefficient of different springs in iMSM were calculated using axial tensile and torsional responses. A dynamic simulation of transverse bending of the fiber over a rigid cylinder and subjected to a transverse pressure was used to determine the effective elastic modulus for four different single fibers and compared to experimental values with an average relative error of 8.49%. The dynamic simulations were completed in 1.04–2.64 min for the four different paper fibers representing sufficient speeds to meet the needs of most real application scenarios. The acceptable accuracy and the fast simulation speed with the developed iMSM fiber model demonstrate the feasibility of the methodology in analyzing paper structures as well as similar fiber-based materials. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Graphical abstract

15 pages, 2404 KB  
Article
Electric Field-Enhanced SPR Sensors with AuNPs and CQDs for Rapid and Low-Detection-Limit Detection of Co2+
by Xinyue Jing, Minxuan Chen, Xingye Ma, Xinrui Xu, Ning Wang, Kunpeng Niu, Xiaohan Chen, Yihao Wang, Jiayi Zhu, Jianguo Hou and Zhichao Wang
Solids 2025, 6(3), 49; https://doi.org/10.3390/solids6030049 - 1 Sep 2025
Viewed by 415
Abstract
As a vital transition metal species, cobalt ions (Co2+) play a critical role in industrial and medical fields. However, uncontrolled release into ecosystems via industrial effluents presents significant environmental risks. To address this, a prism-coupled surface plasmon resonance (SPR) sensor chip [...] Read more.
As a vital transition metal species, cobalt ions (Co2+) play a critical role in industrial and medical fields. However, uncontrolled release into ecosystems via industrial effluents presents significant environmental risks. To address this, a prism-coupled surface plasmon resonance (SPR) sensor chip was developed which enables simultaneous high sensitivity, wide detection range, and rapid detection of Co2+ under ultra-low detection limit conditions. By depositing a 50 nm Au film and AuNPs on a glass substrate, and integrating carboxyl-functionalized carbon quantum dots (CQDs), the chip achieved the detection range of 10−20 mol/L to 10−4 mol/L, and the response time was reduced from 21 min to 11 min under optimal electric field conditions (1.2 V, 0.15 mol/L electrolyte concentration). The sensor exhibits high selectivity, repeatability, and stability. It can be integrated with optofluidic technology to enable high-throughput microfluidic analysis, thereby facilitating further advancements in related research. Full article
Show Figures

Graphical abstract

20 pages, 3429 KB  
Article
Insights into the Electrocatalytic Activity of Mixed-Valence Mn3+/Mn4+ and Fe2+/Fe3+ Transition Metal Oxide Materials
by Bogdan-Ovidiu Taranu, Paula Svera, Gabriel Buse and Maria Poienar
Solids 2025, 6(3), 48; https://doi.org/10.3390/solids6030048 - 26 Aug 2025
Viewed by 768
Abstract
Hydrogen generation has become a popular research subject in light of currently pressing issues, such as the rapidly increasing environmental pollution, the depleting fossil fuel reserves, and the looming energy crisis. Sustainable electrochemical water splitting is regarded as one of the most desirable [...] Read more.
Hydrogen generation has become a popular research subject in light of currently pressing issues, such as the rapidly increasing environmental pollution, the depleting fossil fuel reserves, and the looming energy crisis. Sustainable electrochemical water splitting is regarded as one of the most desirable methods for obtaining green hydrogen. Considering this state of affairs, the water splitting electrocatalytic activity of glassy carbon electrodes modified with birnessite-type K2Mn4O8 and mixed-valence iron phosphate Fe3(PO3OH)4(H2O)4 materials were evaluated in electrolyte solutions having different pH values. Both compounds were characterized by X-ray diffraction and FT-IR spectroscopy in order to analyze their phase purity and their structural features. The most catalytically active birnessite-type K2Mn4O8-based electrode was manufactured using a catalyst ink containing only the electrocatalyst dispersed in ethanol and Nafion solution. In 0.1 M H2SO4, it exhibited an oxygen evolution reaction (OER) overpotential of 1.07 V and a hydrogen evolution reaction (HER) overpotential of 0.957 V. The Tafel slopes obtained in the OER and HER experiments were 0.180 and 0.142 V/dec, respectively. The most catalytically active mixed-valence iron phosphate Fe3(PO3OH)4(H2O)4-based electrode was obtained with a catalyst ink containing the specified material mixed with carbon black and dispersed in ethanol and Nafion solution. In a strongly alkaline medium, it displayed a HER overpotential of 0.515 V and a Tafel slope value of 0.122 V/dec. The two electrocatalysts have not been previously investigated in this way, and the acquired data provide insights into their electrocatalytic activity and improve the scientific understanding of their properties and applicative potential. Full article
Show Figures

Figure 1

29 pages, 5199 KB  
Review
Recent Progress on Synthesis and Electrochemical Performance of Iron Fluoride Conversion Cathodes for Li-Ion Batteries
by Jiabin Tian, Ziyi Yang, Yayun Zheng and Zhengfei Chen
Solids 2025, 6(3), 47; https://doi.org/10.3390/solids6030047 - 22 Aug 2025
Viewed by 789
Abstract
Despite notable advancements in lithium-ion battery (LIB) technology, growing industrialization, rising energy demands, and evolving consumer electronics continue to raise performance requirements. As the primary determinant of battery performance, cathode materials have become a central research focus. Among emerging candidates, iron-based fluorides show [...] Read more.
Despite notable advancements in lithium-ion battery (LIB) technology, growing industrialization, rising energy demands, and evolving consumer electronics continue to raise performance requirements. As the primary determinant of battery performance, cathode materials have become a central research focus. Among emerging candidates, iron-based fluorides show great promise due to their high theoretical specific capacities, elevated operating voltages, low cost (owing to abundant iron and fluorine), and structurally diverse crystalline forms such as pyrochlore and tungsten bronze types. These features make them strong contenders for next-generation high-energy, low-cost LIBs. This review highlights recent progress in iron-based fluoride cathode materials, with an emphasis on structural regulation and performance enhancement strategies. Using pyrochlore-type hydrated iron trifluoride (Fe2F5·H2O), synthesized via ionic liquids like BmimBF4, as a representative example, we discuss key methods for tuning physicochemical properties—such as electronic conductivity, ion diffusion, and structural stability—via doping, compositing, nanostructuring, and surface engineering. Advanced characterization tools (XRD, SEM/TEM, XPS, Raman, synchrotron radiation) and electrochemical analyses are used to reveal structure–property–performance relationships. Finally, we explore current challenges and future directions to guide the practical deployment of iron-based fluorides in LIBs. This review provides theoretical insights for designing high-performance, cost-effective cathode materials. Full article
Show Figures

Graphical abstract

25 pages, 7131 KB  
Article
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Vanadis 60 Steel: A Statistical Design Approach
by Florentino Alvarez-Antolin and Alejandro González-Pociño
Solids 2025, 6(3), 46; https://doi.org/10.3390/solids6030046 - 19 Aug 2025
Viewed by 733
Abstract
This study investigates the influence of key heat treatment parameters on the microstructure and mechanical properties of the powder metallurgy tool steel Vanadis 60. A fractional factorial design of experiments was applied to evaluate the effects of austenitising temperature, quenching medium, tempering temperature, [...] Read more.
This study investigates the influence of key heat treatment parameters on the microstructure and mechanical properties of the powder metallurgy tool steel Vanadis 60. A fractional factorial design of experiments was applied to evaluate the effects of austenitising temperature, quenching medium, tempering temperature, and number of tempering cycles on hardness, flexural strength, and microstructure, using detailed phase characterisation by X-ray diffraction. The results reveal two distinct processing routes tailored to different performance objectives. Maximum hardness was achieved by combining austenitisation at 1180 °C, rapid oil quenching, and tempering at 560 °C. These conditions enhance the solubility of carbon and other alloying elements, promote secondary hardening, and reduce retained austenite. Conversely, higher toughness and ductility were obtained by austenitising at 1020 °C, air cooling, and tempering at 560 °C. These parameters favour the formation of a bainitic microstructure, together with lower martensite tetragonality and minimal retained austenite. A statistically significant interaction was identified between the austenitising temperature and the number of tempering cycles; three temperings were sufficient to compensate for the lower hardness associated with reduced austenitising temperatures. The results provide a robust guidance for optimising thermal processing in highly alloyed tool steels, enabling the precise tailoring of microstructure and properties in accordance with specific mechanical service requirements. Full article
Show Figures

Figure 1

11 pages, 2246 KB  
Article
Enhancing the Structural Stability and Electrochemical Performance of δ-MnO2 Cathodes via Fe3+ Doping for Aqueous Zinc-Ion Batteries
by Pengfei Wang, Haiyang Yu, Chengyan Zou, Yuxue Wu and Zhengfei Chen
Solids 2025, 6(3), 45; https://doi.org/10.3390/solids6030045 - 14 Aug 2025
Viewed by 466
Abstract
Due to its unique layered structure that facilitates ion intercalation and deintercalation, δ-MnO2 has emerged as a promising cathode material for aqueous zinc-ion batteries (ZIBs). However, its structural collapse and Mn dissolution during prolonged cycling significantly limit its practical application. In this [...] Read more.
Due to its unique layered structure that facilitates ion intercalation and deintercalation, δ-MnO2 has emerged as a promising cathode material for aqueous zinc-ion batteries (ZIBs). However, its structural collapse and Mn dissolution during prolonged cycling significantly limit its practical application. In this study, we demonstrate that metal ion doping, particularly with Fe3+, can effectively stabilize the δ-MnO2 structure and enhance its electrochemical performance. Through a hydrothermal synthesis approach, δ-MnO2 materials with varying Fe3+ doping ratios are prepared and systematically investigated. Among them, the sample with a Mn:Fe molar ratio of 20:1 exhibits the best performance, maintaining the layered δ-MnO2 phase while significantly increasing Mn3+ content and promoting the formation of oxygen vacancies. At a current density of 0.5 A·g−1, the iron-doped sample exhibited an initial specific capacity of 116.24 mAh·g−1, with a capacity retention rate of 41.7% after 200 cycles. In contrast, the undoped δ-MnO2 showed an initial specific capacity of only 85.15 mAh·g−1, with a capacity retention rate of merely 19.9% after 200 cycles. The results suggest that Fe3+ doping not only suppresses Mn dissolution but also improves structural stability and Zn2+ transport kinetics. This work provides new insights into the development of durable Mn-based cathode materials for aqueous ZIBs. Full article
Show Figures

Figure 1

12 pages, 4698 KB  
Article
Use of Electrochemical Impedance Spectroscopy, Capacity, and Electrochemical Noise Measurements to Study Aging of Lithium-Ion Batteries
by Abdelfattah Boukhssim, Hassan Yassine, Gérard Leroy, Jean-Claude Carru, Manuel Mascot, Christophe Poupin and Mohammad Kassem
Solids 2025, 6(3), 44; https://doi.org/10.3390/solids6030044 - 13 Aug 2025
Viewed by 1216
Abstract
Aging studies of lithium-ion batteries are essential for understanding material degradation, which impacts performance and, consequently, battery lifespan. In this paper, we propose the use of electrochemical impedance spectroscopy, differential capacity analysis, and electrochemical noise measurements to evaluate the effects of different C-rates [...] Read more.
Aging studies of lithium-ion batteries are essential for understanding material degradation, which impacts performance and, consequently, battery lifespan. In this paper, we propose the use of electrochemical impedance spectroscopy, differential capacity analysis, and electrochemical noise measurements to evaluate the effects of different C-rates (2C, C/2, and C/20) on a cell. We study aging up to 800 charge/discharge cycles. We demonstrate that aging is associated with a linear increase in electrode resistance, which correlates with capacity fading. Additionally, noise measurements indicate a rise in noise levels at low frequencies following a 1/fγ trend with 1<γ<2. Full article
Show Figures

Figure 1

21 pages, 13122 KB  
Article
A Novel CuAlMnFe/CeO2 Composite Alloy: Investigating the Wear and Corrosion Features
by Fatih Doğan and Erhan Duru
Solids 2025, 6(3), 43; https://doi.org/10.3390/solids6030043 - 11 Aug 2025
Viewed by 496
Abstract
Shape memory alloys (SMAs) are known for their exceptional mechanical properties, particularly their superior wear resistance compared to conventional alloys with similar surface hardness. Rare earth oxides are often used as additives to further improve these characteristics. This study investigates the effects of [...] Read more.
Shape memory alloys (SMAs) are known for their exceptional mechanical properties, particularly their superior wear resistance compared to conventional alloys with similar surface hardness. Rare earth oxides are often used as additives to further improve these characteristics. This study investigates the effects of different CeO2 (cerium dioxide) concentrations (0.01 wt.%, 0.1 wt.%, 0.5 wt.%, and 1.0 wt.%) on the properties of CuAlMnFe alloys produced via powder metallurgy (PM). Various analyses were performed, including scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray diffraction (XRD), as well as hardness, wear, and corrosion tests. The increase in wear rate is closely related to the formation of precipitates from CeO2 addition. Improvements in wear resistance and hardness are attributed to the effects of grain refinement and solid solution strengthening due to CeO2. Specifically, the wear rate increased from 1.5 × 10−3 mm3/(Nm) to 3.4 × 10−3 mm3/(Nm) with higher CeO2 content. Additionally, the friction coefficient of the CuAlMnFe alloy was reduced with CeO2 addition, indicating enhanced frictional properties. The optimal CeO2 concentration of 0.5% was found to improve grain uniformity, resulting in better wear resistance. Incorporating CeO2 particles into CuAlMnFe alloy enhances hardness and reduces wear rate when used in appropriate amounts. Additionally, it exhibits superior corrosion resistance, as evidenced by a positive shift in corrosion potential in Tafel measurements in solutions and a decrease in corrosion current density. The C0.5 specimen showed the highest corrosion potential (Ecorr, −588 V) and the lowest corrosion current density (icorr, 6.17 μA/cm2) during electrochemical corrosion in 3.5 wt.% NaCl solution. Full article
Show Figures

Figure 1

10 pages, 6480 KB  
Article
Effect of Sputtering Power and Post-Deposition Annealing on Thermoelectric Performance of Ag2Se Flexible Thin Films
by Zinan Zhong, Zilong Zhang, Fu Li, Yuexing Chen, Jingting Luo and Zhuanghao Zheng
Solids 2025, 6(3), 42; https://doi.org/10.3390/solids6030042 - 6 Aug 2025
Viewed by 398
Abstract
Ag2Se has attracted significant attention as a promising alternative to Bi2Te3 for near-room-temperature thermoelectric (TE) applications. In this study, flexible Ag2Se thin films were fabricated via magnetron sputtering under different sputtering power settings, followed by post-deposition [...] Read more.
Ag2Se has attracted significant attention as a promising alternative to Bi2Te3 for near-room-temperature thermoelectric (TE) applications. In this study, flexible Ag2Se thin films were fabricated via magnetron sputtering under different sputtering power settings, followed by post-deposition annealing to optimize their TE properties. Structural and compositional analyses confirmed the successful synthesis of Ag2Se films with high crystallinity. Additionally, tuning the sputtering power and annealing temperatures can effectively enhance the electrical conductivity, Seebeck coefficient, and overall power factor. A significant power factor of ~17.4 µW·cm−1·K−2 at 100 °C was achieved in the 30 W sputtering power and 300 °C annealing sample, pointing out the huge potential of Ag2Se thin films as self-powered flexible devices. Full article
Show Figures

Graphical abstract

36 pages, 6545 KB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 - 1 Aug 2025
Viewed by 1559
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

11 pages, 1176 KB  
Article
Nonreciprocal Transport Driven by Noncoplanar Magnetic Ordering with Meron–Antimeron Spin Textures
by Satoru Hayami
Solids 2025, 6(3), 40; https://doi.org/10.3390/solids6030040 - 29 Jul 2025
Viewed by 560
Abstract
Noncoplanar spin textures give rise not only to unusual magnetic structures but also to emergent electromagnetic responses stemming from scalar spin chirality, such as the topological Hall effect. In this study, we theoretically investigate nonreciprocal transport phenomena induced by noncoplanar magnetic orderings through [...] Read more.
Noncoplanar spin textures give rise not only to unusual magnetic structures but also to emergent electromagnetic responses stemming from scalar spin chirality, such as the topological Hall effect. In this study, we theoretically investigate nonreciprocal transport phenomena induced by noncoplanar magnetic orderings through microscopic model analyses. By focusing on meron–antimeron spin textures that exhibit local scalar spin chirality while maintaining vanishing global chirality, we demonstrate that the electronic band structure becomes asymmetrically modulated, which leads to the emergence of nonreciprocal transport. The present mechanism arises purely from the noncoplanar magnetic texture itself and requires neither net magnetization nor relativistic spin–orbit coupling. We further discuss the potential relevance of our findings to the compound Gd2PdSi3, which has been suggested to host a meron–antimeron crystal phase at low temperatures. Full article
Show Figures

Figure 1

15 pages, 4855 KB  
Article
An Investigation of the Surface-Regulating Mechanism of Tungsten Alloys Using the Electrochemical Polishing Process
by Yachun Mao, Yanqiu Xu, Shiru Le, Maozhong An, Zhijiang Wang and Yuhan Zhang
Solids 2025, 6(3), 39; https://doi.org/10.3390/solids6030039 - 24 Jul 2025
Viewed by 679
Abstract
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic [...] Read more.
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic polishing offers high efficiency, low workpiece wear, and simple processing. In this study, an electrolytic polishing method is adopted and a novel trisodium phosphate–sodium hydroxide electrolytic polishing electrolyte is developed to study the effects of temperature, voltage, polishing time, and solution composition on the surface roughness of a tungsten–nickel–iron alloy. The optimal voltage, temperature, and polishing time are determined to be 15 V, 55 °C, and 35 s, respectively, when the concentrations of trisodium phosphate and sodium hydroxide are 100 g·L−1 and 6 g·L−1. In addition, glycerol is introduced into the electrolyte as an additive. The calculated LUMO value of glycerol is −5.90 eV and the HOMO value is 0.40 eV. Moreover, electron enrichment in the hydroxyl region of glycerol can form an adsorption layer on the surface of the tungsten alloy, inhibit the formation of micro-pits, balance ion diffusion, and thus promote the formation of a smooth surface. At 100 mL·L−1 of glycerol, the roughness of the tungsten–nickel–iron alloy decreases significantly from 1.134 μm to 0.582 μm. The electrochemical polishing mechanism of the tungsten alloy in a trisodium phosphate electrolyte is further investigated and explained according to viscous film theory. This study demonstrates that the trisodium phosphate–sodium hydroxide–glycerol electrolyte is suitable for electropolishing tungsten–nickel–iron alloys. Overall, the results support the application of tungsten–nickel–iron alloy in the electronics, medical, and atomic energy industries. Full article
Show Figures

Graphical abstract

17 pages, 2381 KB  
Review
From Na2Cl to CaCl: Progress in the 2D Crystals of Unconventional Stoichiometries in Ambient Conditions
by Mengjiao Wu, Xiaoling Lei and Haiping Fang
Solids 2025, 6(3), 38; https://doi.org/10.3390/solids6030038 - 15 Jul 2025
Viewed by 842
Abstract
Two-dimensional (2D) crystals which present unconventional stoichiometries on graphene surfaces in ambient conditions, such as Na2Cl, Na3Cl, and CaCl, have attracted significant attention in recent years due to their electronic structures and abnormal cation–anion ratios, which differ from those [...] Read more.
Two-dimensional (2D) crystals which present unconventional stoichiometries on graphene surfaces in ambient conditions, such as Na2Cl, Na3Cl, and CaCl, have attracted significant attention in recent years due to their electronic structures and abnormal cation–anion ratios, which differ from those of conventional three-dimensional crystals. This unconventional crystallization is attributed to the cation–π interaction between ions and the π-conjugated system of the graphene surface. Consequently, their physical and chemical properties—including their electrical, optical, magnetic, and mechanical characteristics—often differ markedly from those of conventional crystals. This review summarizes the recent progress made in the fabrication and analysis of the structures, distinctive features, and applications of these 2D unconventional stoichiometry crystals on graphene surfaces in ambient conditions. Their special properties, including their piezoelectricity, metallicity, heterojunction, and room-temperature ferromagnetism, are given particularly close attention. Finally, some significant prospects and further developments in this exciting interdisciplinary field are proposed. Full article
Show Figures

Figure 1

15 pages, 2902 KB  
Article
Synergistic Integration of MXene Photothermal Conversion and TiO2 Radiative Cooling in Bifunctional PLA Fabrics for Adaptive Personal Thermal Management
by Tianci Han and Yunjie Yin
Solids 2025, 6(3), 37; https://doi.org/10.3390/solids6030037 - 12 Jul 2025
Viewed by 893
Abstract
Polylactic acid (PLA) fabrics exhibit significant sunlight reflectivity and high emissivity within the atmospheric window, making them suitable as the foundational material for this study. This research involves the modification of one side of the fabric with hydrophilic agents and titanium dioxide (TiO [...] Read more.
Polylactic acid (PLA) fabrics exhibit significant sunlight reflectivity and high emissivity within the atmospheric window, making them suitable as the foundational material for this study. This research involves the modification of one side of the fabric with hydrophilic agents and titanium dioxide (TiO2), while the opposite side is treated with MXene and subsequently coated with polydimethylsiloxane (PDMS) to inhibit oxidation of the MXene. Through these surface modifications, a thermal management fabric based on PLA was successfully developed, capable of passively regulating temperature in response to environmental conditions and user requirements. The study discusses the optimal concentrations of TiO2 and MXene for the fabric, and characterizes and evaluates the functional surface of the PLA. Surface morphology analyses and tests indicate that the resulting functional PLA fabrics possess excellent ultraviolet (UV) resistance, favorable air permeability, high sunlight reflectivity on the TiO2-treated side, and superior photothermal conversion capabilities on the MXene-treated side. Furthermore, photothermal effect tests conducted under a light intensity of 1000 W/m2 reveal that the MXene-treated fabric exhibits a heating effect of approximately 25 °C, while the TiO2-treated side demonstrates a cooling effect exceeding 5 °C. This study developed PLA functional fabrics with heating and cooling capabilities. Full article
Show Figures

Graphical abstract

23 pages, 36557 KB  
Article
Mixed-Mode Fracture Behavior of Penta-Graphene: A Molecular Dynamics Perspective on Defect Sensitivity and Crack Evolution
by Afia Aziz Kona, Aaron Lutheran and Alireza Tabarraei
Solids 2025, 6(3), 36; https://doi.org/10.3390/solids6030036 - 11 Jul 2025
Viewed by 1248
Abstract
This study employs molecular dynamics (MD) simulations to investigate the mechanical response and fracture behavior of penta-graphene, a novel two-dimensional carbon allotrope composed entirely of pentagonal rings with mixed sp2–sp3 hybridization and pronounced mechanical anisotropy. Atomistic simulations are carried out [...] Read more.
This study employs molecular dynamics (MD) simulations to investigate the mechanical response and fracture behavior of penta-graphene, a novel two-dimensional carbon allotrope composed entirely of pentagonal rings with mixed sp2–sp3 hybridization and pronounced mechanical anisotropy. Atomistic simulations are carried out to evaluate the impact of structural defects on mechanical performance and to elucidate crack propagation mechanisms. The results reveal that void defects involving sp3-hybridized carbon atoms cause a more significant degradation in mechanical strength compared to those involving sp2 atoms. During fracture, local atomic rearrangements and bond reconstructions lead to the formation of energetically favorable ring structures—such as hexagons and octagons—at the crack tip, promoting enhanced energy dissipation and fracture resistance. A central focus of this work is the evaluation of the critical stress intensity factor (SIF) under mixed-mode (I/II) loading conditions. The simulations demonstrate that the critical SIF is influenced by the loading phase angle, with pure mode I exhibiting a higher SIF than pure mode II. Notably, penta-graphene shows a critical SIF significantly higher than that of graphene, indicating exceptional fracture toughness that is rare among ultra-thin two-dimensional materials. This enhanced toughness is primarily attributed to penta-graphene’s capacity for substantial out-of-plane deformation prior to failure, which redistributes stress near the crack tip, delays crack initiation, and increases energy absorption. Additionally, the study examines crack growth paths as a function of loading phase angle, revealing that branching and kinking can occur even under pure mode I loading. Full article
Show Figures

Figure 1

21 pages, 4087 KB  
Article
Performance Evaluation of Low-Grade Clay Minerals in LC3-Based Cementitious Composites
by Nosheen Blouch, Syed Noman Hussain Kazmi, Nijah Akram, Muhammad Junaid Saleem, Imran Ahmad Khan, Kashif Javed, Sajjad Ahmad and Asfandyar Khan
Solids 2025, 6(3), 35; https://doi.org/10.3390/solids6030035 - 10 Jul 2025
Viewed by 1144
Abstract
The cements industry is increasingly under pressure to reduce carbon emissions while maintaining performance standards. Limestone calcined clay cement (LC3) presents a promising low-carbon alternative; however, its performance depends significantly on the type and reactivity of clay used. This study investigates [...] Read more.
The cements industry is increasingly under pressure to reduce carbon emissions while maintaining performance standards. Limestone calcined clay cement (LC3) presents a promising low-carbon alternative; however, its performance depends significantly on the type and reactivity of clay used. This study investigates the effect of three common low-grade clay minerals—kaolinite, montmorillonite, and illite—on the behavior of LC3 blends. The clays were thermally activated and characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray fluorescence spectroscopy (XRF), and Blaine air permeability testing to evaluate their mineralogical composition, thermal behavior, chemical content, and fineness. Pozzolanic reactivity was assessed using the modified Chapelle test. Microstructural development was examined through scanning electron microscopy (SEM) of the hydrated specimens at 28 days. The results confirmed a strong correlation between clay reactivity and hydration performance. Kaolinite showed the highest reactivity and fineness, contributing to a dense microstructure with reduced portlandite and enhanced formation of calcium silicate hydrate. Montmorillonite demonstrated comparable strength and favorable hydration characteristics, while illite, though less reactive initially, showed acceptable long-term behavior. Although kaolinite delivered the best overall performance, its limited availability and higher cost suggest that montmorillonite and illite represent viable and cost-effective alternatives, particularly in regions where kaolinite is scarce. This study highlights the suitability of regionally available, low-grade clays for use in LC3 systems, supporting sustainable and economically viable cement production. Full article
(This article belongs to the Topic Novel Cementitious Materials)
Show Figures

Figure 1

24 pages, 3878 KB  
Review
Research Progress and Perspectives on Curved Image Sensors for Bionic Eyes
by Tianlong He, Qiuchun Lu and Xidi Sun
Solids 2025, 6(3), 34; https://doi.org/10.3390/solids6030034 - 10 Jul 2025
Cited by 1 | Viewed by 1015
Abstract
Perovskite bionic eyes have emerged as highly promising candidates for photodetection applications to their wide-angle imaging capabilities, high external quantum efficiency(EQE), and low-cost fabrication and integration. Since their initial exploration in 2015, significant advancements have been achieved in this field, with their EQE [...] Read more.
Perovskite bionic eyes have emerged as highly promising candidates for photodetection applications to their wide-angle imaging capabilities, high external quantum efficiency(EQE), and low-cost fabrication and integration. Since their initial exploration in 2015, significant advancements have been achieved in this field, with their EQE reaching 27%. Nevertheless, intrinsic challenges such as the oxidation susceptibility of perovskites and difficulties in curved surface growth hinder their further development. Addressing these issues necessitates a comprehensive and systematic understanding of the preparation mechanisms for hemispherical perovskite, as well as the development of effective mitigation strategies. In this review, a review published provides a detailed overview of the research progress in hemispherical perovskite photodetectors, with a particular focus on the fundamental properties and fabrication pathways of hemispherical perovskites. Furthermore, various strategies to enhance the performance of hemispherical perovskite and overcome preparation challenges are thoroughly discussed. Finally, existing challenges and perspectives are presented to further advance the development of eco-friendly hemispherical perovskite. Full article
Show Figures

Figure 1

8 pages, 506 KB  
Communication
The Effect of Thickness and Surface Recombination Velocities on the Performance of Silicon Solar Cell
by Chu-Hsuan Lin and Li-Cyuan Huang
Solids 2025, 6(3), 33; https://doi.org/10.3390/solids6030033 - 9 Jul 2025
Viewed by 525
Abstract
With a low surface recombination velocity, it is possible to increase the efficiency of solar cells as the thickness is decreased. A maximum appearing in the efficiency versus thickness curve is mostly due to the same trend in the short-circuit current versus thickness [...] Read more.
With a low surface recombination velocity, it is possible to increase the efficiency of solar cells as the thickness is decreased. A maximum appearing in the efficiency versus thickness curve is mostly due to the same trend in the short-circuit current versus thickness curve. The trend of the short-circuit current versus thickness curve will be clearly discussed based on the view of competition between generation and recombination rates near the rear surface. If surface passivation can be well introduced, the win-win situation for the material cost and efficiency can be achieved based on our results. Full article
Show Figures

Figure 1

15 pages, 2320 KB  
Article
Enhanced Assessment of Transition Metal Copper Sulfides via Classification of Density of States Spectra
by Md Tohidul Islam, Catalina Victoria Ruiz, Claudia Loyola, Joaquin Peralta and Scott R. Broderick
Solids 2025, 6(3), 32; https://doi.org/10.3390/solids6030032 - 25 Jun 2025
Viewed by 800
Abstract
Understanding how crystal structure influences electronic properties is crucial for discovering new functional materials. In this study, we utilized Kernel Principal Component Analysis (KPCA) to classify and analyze the Density of States (DOS) of transition metal sulfide (TMS) compounds, particularly copper-based sulfides. By [...] Read more.
Understanding how crystal structure influences electronic properties is crucial for discovering new functional materials. In this study, we utilized Kernel Principal Component Analysis (KPCA) to classify and analyze the Density of States (DOS) of transition metal sulfide (TMS) compounds, particularly copper-based sulfides. By mapping high-dimensional DOS data into a lower-dimensional space, we identify clusters corresponding to different crystal systems and detect outliers with significant deviations from their expected groups. These outliers exhibit unusual electronic configurations, suggesting potential applications in semiconductors, thermoelectric devices, and optoelectronic devices. Projected Density of States (PDOS) analysis further reveals how orbital hybridization governs the electronic structure of these materials, highlighting key differences between structurally similar compounds. Additionally, we analyze phase stability through inter-cluster distance measurements, identifying potential phase transformations between closely related structures. The implications for this work in terms of modifying chemistries and generalized DOS predictions are discussed. Full article
Show Figures

Figure 1

15 pages, 2266 KB  
Article
SCAPS-1D Simulation of Various Hole Transport Layers’ Impact on CsPbI2Br Perovskite Solar Cells Under Indoor Low-Light Conditions
by Chih-Hsi Peng and Yi-Cheng Lin
Solids 2025, 6(3), 31; https://doi.org/10.3390/solids6030031 - 21 Jun 2025
Viewed by 1910
Abstract
This study presents the first comprehensive theoretical investigation utilizing SCAPS-1D simulation to systematically evaluate eight hole transport materials for CsPbI2Br perovskite solar cells under authentic indoor LED conditions (560 lux, 5700 K color temperature). Unlike previous studies employing simplified illumination assumptions, [...] Read more.
This study presents the first comprehensive theoretical investigation utilizing SCAPS-1D simulation to systematically evaluate eight hole transport materials for CsPbI2Br perovskite solar cells under authentic indoor LED conditions (560 lux, 5700 K color temperature). Unlike previous studies employing simplified illumination assumptions, our work establishes fundamental design principles for indoor photovoltaics through rigorous material property correlations. The investigation explores the influence of layer thickness and defect concentration on performance to identify optimal parameters. Through detailed energy band alignment analysis, we demonstrate that CuI achieves superior performance (PCE: 23.66%) over materials with significantly higher mobility, revealing that optimal band alignment supersedes carrier mobility under low-light conditions. Analysis of HTL and absorber layer thickness, bulk defect concentration, interface defect density, and an HTL-free scenario showed that interface defect concentration and absorber layer parameters have greater influence than HTL thickness. Remarkably, ultra-thin HTL layers (0.04 μm) maintain >99% efficiency, offering substantial cost reduction potential for large-scale manufacturing. Under optimized conditions of a 0.87 μm absorber layer thickness, defect concentration of 1015 cm−3, interface defect concentration of 109 cm−3, and CuI doping concentration of 1017 cm−3, PCE reached 28.57%, while the HTL-free structure achieved 17.6%. This study establishes new theoretical foundations for indoor photovoltaics, demonstrating that material selection criteria differ fundamentally from outdoor applications. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop