Biocontrol of Avian Gastrointestinal Parasites Using Predatory Fungi: Current Status, Challenges, and Opportunities
Abstract
:1. Gastrointestinal Parasites of Galliformes and Ratites
2. Biocontrol of GI Parasites Using Predatory Fungi
3. Testing the Use of Predatory Fungi against Avian GI Parasites: State of the Art
4. Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yazwinski, T.A.; Tucker, C.A. Nematodes and Acanthocephalans. In Diseases of Poultry, 12th ed.; Saif, Y.M., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2008; pp. 1025–1056. [Google Scholar]
- Thapa, S.; Hinrichsen, L.K.; Brenninkmeyer, C.; Gunnarsson, S.; Heerkens, J.L.T.; Verwer, C.; Niebuhr, K.; Willett, A.; Grilli, G.; Thamsborg, S.M.; et al. Prevalence and magnitude of helminth infections in organic laying hens (Gallus domesticus) across Europe. Vet. Parasitol. 2015, 214, 118–124. [Google Scholar] [CrossRef]
- Fatoba, A.J.; Adeleke, M.A. Diagnosis and control of chicken coccidiosis: A recent update. J. Parasit. Dis. 2018, 42, 483–493. [Google Scholar] [CrossRef]
- Lozano, J.; Anaya, A.; Palomero Salinero, A.; Lux Hoppe, E.G.; Gomes, L.; Paz-Silva, A.; Teresa Rebelo, M.; Madeira de Carvalho, L. Gastrointestinal parasites of free-range chickens—A worldwide issue. Bull. UASVM Vet. Med. 2019, 76, 110–117. [Google Scholar] [CrossRef]
- Attree, E.; Sanchez-Arsuaga, G.; Jones, M.; Xia, D.; Marugan-Hernandez, V.; Blake, D.; Tomley, F. Controlling the causative agents of coccidiosis in domestic chickens; an eye on the past and considerations for the future. CABI Agric. Biosci. 2021, 2, 37. [Google Scholar] [CrossRef]
- Lozano, J.; Almeida, C.; Victório, A.C.; Melo, P.; Rodrigues, J.P.; Rinaldi, L.; Cringoli, G.; Gomes, L.; Oliveira, M.; Paz-Silva, A.; et al. Implementation of Mini-FLOTAC in Routine Diagnosis of Coccidia and Helminth Infections in Domestic and Exotic Birds. Vet. Sci. 2021, 8, 160. [Google Scholar] [CrossRef]
- Mesa-Pineda, C.; Navarro-Ruíz, J.L.; López-Osorio, S.; Chaparro-Gutiérrez, J.J.; Gómez-Osorio, L.M. Chicken Coccidiosis: From the Parasite Lifecycle to Control of Disease. Front. Vet. Sci. 2021, 8, 787653. [Google Scholar] [CrossRef]
- Nath, T.C.; Eom, K.S.; Choe, S.; Hm, S.; Islam, S.; Ndosi, B.A.; Kang, Y.; Bia, M.M.; Kim, S.; Eamudomkarn, C.; et al. Insight into One Health Approach: Endoparasite Infections in Captive Wildlife in Bangladesh. Pathogens 2021, 10, 250. [Google Scholar] [CrossRef]
- Titilincu, A.; Mircean, V.; Bejan, A.; Iovu, A.; Ungureanu, R.; Cozma, V. Prevalence of endoparasites in peacocks (Pavo cristatus). Sci. Parasitol. 2009, 10, 101–105. [Google Scholar]
- Papini, R.; Girivetto, M.; Marangi, M.; Mancianti, F.; Giangaspero, A. Endoparasite infections in pet and zoo birds in Italy. Sci. World J. 2012, 2012, 253127. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, A.K.; Sudan, V.; Shanker, D.; Kumar, P. Endoparasitic infections in Indian peacocks (Pavo cristatus) of Veterinary College Campus, Mathura. J. Parasit. Dis. 2013, 37, 26–28. [Google Scholar] [CrossRef] [Green Version]
- Prakashbabu, B.C.; Thenmozhi, V.; Limon, G.; Kundu, K.; Kumar, S.; Garg, R.; Clark, E.L.; Srinivasa Rao, A.S.R.; Raj, D.G.; Raman, M.; et al. Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity. Vet. Parasitol. 2017, 233, 62–72. [Google Scholar] [CrossRef]
- Lolli, S.; Grilli, G.; Ferrari, L.; Ferrari, P.; Ferrante, V. Effect of range use on endo- and ectoparasite infestation in italian organic egg production. Ital. J. Anim. Sci. 2019, 18, 690–695. [Google Scholar] [CrossRef] [Green Version]
- Carrisosa, M.; Jin, S.; McCrea, B.A.; Macklin, K.S.; Dormitorio, T.; Hauck, R. Prevalence of select intestinal parasites in Alabama backyard poultry flocks. Animals 2021, 11, 939. [Google Scholar] [CrossRef]
- Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V.; Ayoade, S.; Gilbert, W.; Adebambo, A.O.; Jatau, I.D.; et al. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 2020, 51, 115. [Google Scholar] [CrossRef]
- Ilić, T.; Becskei, Z.; Gajić, B.; Özvegy, J.; Stepanović, P.; Nenadović, K.; Dimitrijević, S. Prevalence of endoparasitic infections of birds in zoo gardens in Serbia. Acta Parasitol. 2018, 63, 134–146. [Google Scholar] [CrossRef]
- Valadão, M.C.; Vieira, Í.S.; Millena de Carvalho, L.; Neves, P.H.; Magalhães, R.T.; Campos, A.K.; Araújo, J. Gastrointestinal helminth parasites of Gallus gallus in extensive system in the city of Viçosa, Minas Gerais, Brazil. Braz. J. Vet. Med. 2021, 43, e002121. [Google Scholar] [CrossRef]
- Jansson, D.S.; Christensson, D. Gastrointestinala parasiter hos strutsfåglar i Sverige. Sven. Vet. Tidn. 2000, 52, 621–626. [Google Scholar]
- Ponce Gordo, F.; Herrera, S.; Castro, A.T.; García Durán, B.; Martínez Díaz, R.A. Parasites from farmed ostriches (Struthio camelus) and rheas (Rhea americana) in Europe. Vet. Parasitol. 2002, 107, 137–160. [Google Scholar] [CrossRef]
- McKenna, P.B. Libyostrongylus infections in ostriches—A brief review with particular reference to their detection in New Zeland. N. Z. Vet. J. 2005, 53, 267–270. [Google Scholar] [CrossRef]
- Kummrow, M.S. Ratites or Struthioniformes: Struthiones, Rheae, Cassuarii, Apteryges (Ostriches, Rheas, Emus, Cassowaries, and Kiwis), and Tinamiformes (Tinamous). In Fowler’s Zoo and Wild Animal Medicine; Eric Miller, R., Fowler, M.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 8, pp. 75–82. [Google Scholar]
- Ederli, N.B.; Rodrigues de Oliveira, F.C. Gastrointestinal nematodes in ostriches, Struthio camelus, in different regions of the state of Rio de Janeiro, Brazil. Braz. J. Vet. Parasitol. 2015, 24, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Köhler, P. The biochemical basis of anthelminthic action and resistance. Int. J. Parasitol. 2001, 31, 336–345. [Google Scholar] [CrossRef]
- Beynon, S.A. Potential environmental consequences of administration of anthelmintics to sheep. Vet. Parasitol. 2012, 189, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Noack, S.; Chapman, H.D.; Selzer, P.M. Anticoccidial drugs of the livestock industry. Parasitol. Res. 2019, 118, 2009–2026. [Google Scholar] [CrossRef] [Green Version]
- Selzer, P.M.; Epe, C. Antiparasitics in Animal Health: Quo Vadis? Trends Parasitol. 2021, 37, 77–89. [Google Scholar] [CrossRef]
- Araújo, J.V.; Braga, F.R.; Mendoza de Gives, P.; Paz-Silva, A.; Vilela, V.L.R. Recent Advances in the Control of Helminths of Domestic Animals by Helminthophagous Fungi. Parasitologia 2021, 1, 168–176. [Google Scholar] [CrossRef]
- Canhão-Dias, M.; Paz-Silva, A.; Madeira de Carvalho, L.M. The efficacy of predatory fungi on the control of gastrointestinal parasites in domestic and wild animals—A systematic review. Vet. Parasitol. 2020, 283, 109173. [Google Scholar] [CrossRef]
- Braga, F.R.; Araújo, J.V. Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Appl. Microbiol. Biotechnol. 2014, 98, 71–82. [Google Scholar] [CrossRef]
- Madeira de Carvalho, L.M.; Bernardo, F.A.; Paz-Silva, A. The role of fungi in the control of animal parasites—classification, mode of action and practical applications. In Fungi: Types, Environmental Impact and Role in Disease; Paz-Silva, A., Vázquez, M.S.A., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2012; pp. 271–308. [Google Scholar]
- Madeira de Carvalho, L.M.; Serra, P.M.; Bernardo, F.A.; Agrícola, R.; Jorge, H.; Farrim, A.P.; Fazendeiro, I.M.; Paz-Silva, A. Controlo Integrado da Estrongilidose Equina com Anti-Helmínticos Associados ao Fungo Duddingtonia flagrans: Aspectos da sua Utilização em Portugal. Acta Parasitol. Port. 2011, 18, 63–90. [Google Scholar]
- Healey, K.; Lawlora, C.; Knox, M.R.; Chambers, M.; Lamb, J.; Groves, P. Field evaluation of Duddingtonia flagrans IAH 1297 for the reduction of worm burden in grazing animals: Pasture larval studies in horses, cattle and goats. Vet. Parasitol. 2018, 258, 124–132. [Google Scholar] [CrossRef]
- Branco de Oliveira, L.S.S.C.; Dias, F.G.S.; Melo, A.L.T.; Millena de Carvalho, L.; Silva, E.N.; Araújo, J.V. Bioverm® in the Control of Nematodes in Beef Cattle Raised in the Central-West Region of Brazil. Pathogens 2021, 10, 548. [Google Scholar] [CrossRef]
- Palomero, A.M.; Cazapal-Monteiro, C.F.; Viña, C.; Hernández, J.; Voinot, M.; Vilá, M.; Silva, M.I.; Paz-Silva, A.; Sánchez-Andrade, R.; Arias, M.S. Formulating fungal spores to prevent infection by trichostrongylids in a zoological park: Practical approaches to a persisting problem. Biol. Control 2021, 152, 104466. [Google Scholar] [CrossRef]
- Voinot, M.; Bonilla, R.; Sousa, S.; Sanchís, J.; Canhão-Dias, M.; Delgado, J.R.; Lozano, J.; Sánchez-Andrade, R.; Arias, M.S.; Madeira de Carvalho, L. Control of Strongyles in First-Season Grazing Ewe Lambs by Integrating Deworming and Thrice-Weekly Administration of Parasiticidal Fungal Spores. Pathogens 2021, 10, 1338. [Google Scholar] [CrossRef] [PubMed]
- Saumell, C.; Fernández, A.; Echevarria, F.; Gonçalves, I.; Iglesias, L.; Sagües, M.; Rodríguez, E. Lack of negative effects of the biological control agent Duddingtonia flagrans on soil nematodes and other nematophagous fungi. J. Helminthol. 2016, 90, 706–711. [Google Scholar] [CrossRef]
- Hernández, J.; Arroyo, F.L.; Suárez, J.; Cazapal-Monteiro, C.F.; Romasanta, Á.; López-Arellano, M.E.; Pedreira, J.; Madeira de Carvalho, L.M.; Sánchez-Andrade, R.; Arias, M.S.; et al. Feeding horses with industrially manufactured pellets with fungal spores to promote nematode integrated control. Vet. Parasitol. 2016, 229, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Soto-Barrientos, N.; Oliveira, J.; Vega-Obando, R.; Montero-Caballero, D.; Vargas, B.; Hernández-Gamboa, J.; Orozco-Solano, C. In-vitro predatory activity of nematophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes. Rev. Biol. Trop. 2011, 59, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Falbo, M.K.; Soccol, V.T.; Sandini, I.E.; Vicente, V.A.; Robl, D.; Soccol, C.R. Isolation and characterization of the nematophagous fungus Arthrobotrys conoides. Parasitol. Res. 2013, 112, 177–185. [Google Scholar] [CrossRef]
- Ojeda-Robertos, N.F.; Aguilar-Marcelino, L.; Olmedo-Juárez, A.; Luna-Palomera, C.; Peralta-Torres, J.A.; López-Arellano, M.E.; Mendoza de Gives, P. In vitro predatory activity of nematophagous fungi isolated from water buffalo feces and from soil in the Mexican southeastern. Rev. Bras. Parasitol. Vet. 2019, 28, 314–319. [Google Scholar] [CrossRef]
- Arroyo-Balán, F.; Landeros-Jaime, F.; González-Garduño, R.; Cazapal-Monteiro, C.; Arias-Vázquez, M.S.; Aguilar-Tipacamú, G.; Esquivel-Naranjo, E.U.; Mosqueda, J. High Predatory Capacity of a Novel Arthrobotrys oligospora Variety on the Ovine Gastrointestinal Nematode Haemonchus contortus (Rhabditomorpha: Trichostrongylidae). Pathogens 2021, 10, 815. [Google Scholar] [CrossRef]
- Ocampo-Gutiérrez, A.Y.; Hernández-Velázquez, V.M.; Aguilar-Marcelino, L.; Cardoso-Taketa, A.; Zamilpa, A.; López-Arellano, M.E.; González-Cortázar, M.; Hernández-Romano, J.; Reyes-Estebanez, M.; Mendoza de Gives, P. Morphological and molecular characterization, predatory behaviour and effect of organic extracts of four nematophagous fungi from Mexico. Fungal Ecol. 2021, 49, 101004. [Google Scholar] [CrossRef]
- Hernández, J.A.; Vázquez-Ruiz, R.A.; Cazapal-Monteiro, C.F.; Valderrábano, E.; Arroyo, F.L.; Francisco, I.; Miguélez, S.; Sánchez-Andrade, R.; Paz-Silva, A.; Arias, M.S. Isolation of Ovicidal Fungi from Fecal Samples of Captive Animals Maintained in a Zoological Park. J. Fungi. 2017, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Han, Y.; Wang, B.-B.; Sun, L.-J.; Chen, M.-Y.; Cai, K.-Z.; Li, X.; Zhao, M.-W.; Xu, C.-L.; Xu, Q.; et al. Isolation, identification, and characterization of the nematophagous fungus Monacrosporium salinum from China. J. Basic Microbiol. 2015, 55, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.-J.; Li, E.-L.; Jing, C.-X.; Ma, L.; Cai, K.-Z. Isolation, identification and characterization of the nematophagous fungus Arthrobotrys (Monacrosporium) sinense from China. Acta Parasitol. 2018, 63, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.; Faedo, M.; Waller, P.J. The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: Survey for the presence of fungi in fresh faeces of grazing livestock in Australia. Vet. Parasitol. 1994, 53, 275–281. [Google Scholar] [CrossRef]
- Faedo, M.; Larsen, M.; Waller, P.J. The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: Comparison between Australian isolates of Arthrobotrys spp. and Duddingtonia flagrans. Vet. Parasitol. 1997, 72, 149–155. [Google Scholar] [CrossRef]
- Gray, N.F.; Smith, R.I.L. The distribution of nematophagous fungi in the maritime Antarctic. Mycopathologia 1984, 85, 81–92. [Google Scholar] [CrossRef]
- Braga, F.R.; Araújo, J.V.; Tavela, A.O.; Vilela, V.L.R.; Soares, F.E.F.; Araujo, J.M.; Magalhães, L.Q.; Ferreira da Silveira, W.; Feitosa, T.F.; Dantas, E.S.; et al. First report of interaction of nematophagous fungi on Libyostrongylus douglassii (Nematoda: Trichostrongylidae). Rev. Bras. Parasitol. Vet. 2013, 22, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Thapa, S.; Mejer, H.; Thamsborg, S.M.; Lekfeldt, J.D.S.; Wang, R.; Jensen, B.; Magid, J.; Meylingb, N.V. Survival of chicken ascarid eggs exposed to different soil types and fungi. Appl. Soil Ecol. 2017, 121, 143–151. [Google Scholar] [CrossRef]
- Silva, M.E.; Ferreira da Silveira, W.; Braga, F.R.; Araújo, J.V. Nematicide activity of microfungi (Orbiliales, Orbiliaceae) after transit through gastrointenstinal tract of “Gallus gallus domesticus”. Rev. Bras. Saúde Prod. Anim. 2017, 18, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Valadão, M.C.; Millena de Carvalho, L.; Vieira, Í.S.; Neves, P.H.; Ferreira, V.M.; Campos, A.K.; Soares, F.E.F.; Ferraz, C.M.; Vilela, V.L.R.; Braga, F.R.; et al. Germination capacity of the Pochonia chlamydosporia fungus after its passage through the gastrointestinal tract of domestic chickens (Gallus gallus domesticus). Exp. Parasitol. 2020, 216, 107936. [Google Scholar] [CrossRef]
- Thapa, S.; Thamsborg, S.M.; Wang, R.; Meyling, N.V.; Dalgaard, T.S.; Petersen, H.H.; Mejer, H. Effect of the nematophagous fungus Pochonia chlamydosporia on soil content of ascarid eggs and infection levels in exposed hens. Parasites Vectors 2018, 11, 319. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, J.M.D.; Casanova, N.A.; Miyakawa, M.E.F. Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.; Tang, X.; Bi, F.; Hao, Z.; Han, Z.; Suo, J.; Zhang, S.; Wang, S.; Duan, C.; Yu, Z.; et al. Eimeria tenella infection perturbs the chicken gut microbiota from the onset of oocyst shedding. Vet. Parasitol. 2018, 258, 30–37. [Google Scholar] [CrossRef] [PubMed]
Type of Assay | Fungal Species (Biotype) | Target Organism | Study Objectives | Reference |
---|---|---|---|---|
In vitro | D. flagrans (AC001; CG722) A. cladodes (CG719) | L. douglassii | Test larvicidal activity against L3 larvae | [49] |
P. chlamydosporia (Biotype 10) Me. brunneum (KVL04-57; KVL16-26) Me. carneum (KVL16-33) Acremonium sp. (KVL16-34) | A. galli H. gallinarum | Test ovicidal activity in different soil types; isolate native ovicidal fungi | [50] | |
In vivo | D. flagrans (AC001; CG722) M. thaumasium (NF34A) | Panagrellus spp. | Test GI passage in chickens and evaluate the maintenance of germination and larvicidal capacities | [51] |
P. chlamydosporia (VC4) | A. galli H. gallinarum | Test GI passage in chickens and evaluate the maintenance of germination and ovicidal capacities | [52] | |
P. chlamydosporia (Biotype 10) | A. galli H. gallinarum | Test ovicidal activity in different soil types; evaluate the interaction soil-fungi in birds worm population and burdens, and egg counting | [53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano, J.; Almeida, C.; Oliveira, M.; Paz-Silva, A.; Madeira de Carvalho, L. Biocontrol of Avian Gastrointestinal Parasites Using Predatory Fungi: Current Status, Challenges, and Opportunities. Parasitologia 2022, 2, 37-44. https://doi.org/10.3390/parasitologia2010004
Lozano J, Almeida C, Oliveira M, Paz-Silva A, Madeira de Carvalho L. Biocontrol of Avian Gastrointestinal Parasites Using Predatory Fungi: Current Status, Challenges, and Opportunities. Parasitologia. 2022; 2(1):37-44. https://doi.org/10.3390/parasitologia2010004
Chicago/Turabian StyleLozano, João, Cristina Almeida, Manuela Oliveira, Adolfo Paz-Silva, and Luís Madeira de Carvalho. 2022. "Biocontrol of Avian Gastrointestinal Parasites Using Predatory Fungi: Current Status, Challenges, and Opportunities" Parasitologia 2, no. 1: 37-44. https://doi.org/10.3390/parasitologia2010004
APA StyleLozano, J., Almeida, C., Oliveira, M., Paz-Silva, A., & Madeira de Carvalho, L. (2022). Biocontrol of Avian Gastrointestinal Parasites Using Predatory Fungi: Current Status, Challenges, and Opportunities. Parasitologia, 2(1), 37-44. https://doi.org/10.3390/parasitologia2010004