Next Article in Journal
Biological Activity and Structure–Activity Relationship of Functionalized Thiols Against Leishmania major, the Agent of Human Cutaneous Leishmaniasis
Previous Article in Journal
Babaçu (Attalea Speciosa) Residue Bio-Oil Repels Livestock Tick Larvae Rhipicephalus (Boophilis) Microplus
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Diversity of Parasites in Two Sympatric Species of Brazilian Tetras (Characiformes: Acestrorhamphidae) in the Caatinga Domain, Northeastern Brazil

by
Bruno Anderson Fernandes da Silva
,
Julia Martini Falkenberg
and
Fábio Hideki Yamada
*
Programa de Pós-Graduação em Diversidade Biológica e Recursos Naturais (PPGDR), Laboratório de Ecologia Parasitária (LABEP), Universidade Regional do Cariri, Rua Cel. Antonio Luiz, 1161, Pimenta, Crato 63105-000, CE, Brazil
*
Author to whom correspondence should be addressed.
Parasitologia 2025, 5(1), 8; https://doi.org/10.3390/parasitologia5010008
Submission received: 29 November 2024 / Revised: 27 January 2025 / Accepted: 5 February 2025 / Published: 14 February 2025

Abstract

:
This study investigates the parasitic biodiversity of the fish species Astyanax bimaculatus and Psalidodon fasciatus in a stream located in the Chapada do Araripe Environmental Protection Area (APA), state of Ceará, Brazil, contributing to the understanding of parasitic fauna diversity of freshwater fish in neotropics. In total, 292 fish specimens were collected and analyzed, identifying 13 parasite taxa in A. bimaculatus and 11 in P. fasciatus. Several parasite groups were identified, including myxozoans, monogeneans, digeneans, and nematodes. The host A. bimaculatus exhibited a higher number of parasite taxa and abundance compared to P. fasciatus. The lower sample size for P. fasciatus reflects its naturally lower abundance in the wild, but the analyses accounted for sampling bias, ensuring comparisons of the parasite communities of these two fish species. The parasite communities of both species showed high similarity, indicating potential host-switching or co-evolutionary patterns. Positive correlations were observed between parasite diversity, species richness, abundance, and host weight/length. The study expands the knowledge of parasite–host associations and the geographical distribution of parasite species in Northeastern Brazil, a region where such data remain underreported.

1. Introduction

Parasites are a fundamental part of communities and ecosystems and are often neglected in fauna survey studies [1,2,3,4]. Inventories of these organisms have an important role in biodiversity studies [5] because these studies allow for understanding the biogeography, phylogeny, and distribution of parasite populations and their intermediate and definitive hosts [6]. Due to their long-term close association with a wide variety of invertebrate forms, fish exhibit a greater quantity and diversity of parasites than any other group of vertebrates [7]. These organisms are ubiquitous components in freshwater fish and highly sensitive to environmental or anthropogenic disturbances [8,9].
Characiformes is an order of Actinopterygii fishes that encompasses 210 genera and 1674 species exclusively of freshwater habitats [10,11]. The South American continent has the largest diversity of freshwater fishes in the world, including the Acestrorhamphidae family with a total number of 685 species identified [12], including species allocated to the genus Astyanax Baird and Girard (1854) and Psalidodon Eigenmann, 1911. These genera include fishes that are popularly known in Brazil as “piabas” or “lambaris” [13]. They are very diverse genera in freshwater ichthyological fauna in the Neotropical region, having about 150 species that are very abundant in the Brazilian hydrographic basin, especially in Brazilian Northeast [14].
In addition to the difficulty in characterizing a typical Caatinga ichthyofauna, studies on the parasitofauna are scarce for the region under study. One factor to be considered regarding the importance of conducting studies on the diversity and structure of parasitic biological communities in these areas is the fact that these environments present a high degree of endemism and reduced physical dimension, making these works a priority, given their environmental vulnerability. Despite the high diversity of hosts, only a few studies on fish parasites are available for freshwater systems in Northeastern Brazil. An inventory of the parasitofauna of freshwater fish in Brazil, conducted by Eiras et al. (2010) [15], documented 1034 parasitic associations in 451 species of freshwater fish. In Northeastern Brazil, recent studies have been carried out by Silva et al. (2020 and 2021) [16,17], Carvalho et al. (2021 and 2022) [18,19], Diniz et al. (2022) [20], Alexandre et al. (2022) [21], Antunes et al. (2022) [22], Sousa et al. (2022, 2023, and 2024) [23,24,25], Yamada et al. (2024) [26], and Falkenberg (2024) [27], which registered 267 parasite–host associations.
Phylogenetically related fish species that share the same habitat are more likely to have a similar composition of parasites in their parasitic community structure. This similarity may be shaped by evolutionary processes like co-speciation or host-switching and further enhanced by common or generalist parasites infecting hosts that coexist in sympatry [28]. Among freshwater fishes, especially in intermittent systems, closely related species in the same habitat have greater access to a shared pool of local parasites, leading to high similarity in their parasite communities [29]. Although host phylogeny has been shown to have a limited impact on parasite diversity and community structure, similarities in parasite communities can still emerge among fish species with similar ecological traits, such as size, habitat preferences, trophic level, and depth distribution [30,31,32,33,34,35,36,37,38].
In this sense, the present study aimed to inventory the parasitic biodiversity of the fish species A. bimaculatus and P. fasciatus from streams located in an area of Chapada do Araripe APA in the municipality of Crato, Ceará state, Brazil. For this, we analyzed the parasitic communities in these two sympatric fish species, investigating their diversity, abundance, and similarity among parasitic populations, as well as correlating these aspects with host characteristics. Our hypothesis is that these two sympatric fish species, with similar ecological characteristics and phylogenetically closely related will have similar parasitic fauna.

2. Results

A total of 292 hosts were analyzed, being 242 A. bimaculatus (standard length range: 3.39–12.31 cm) and 50 P. fasciatus (standard length range: 3.34–6.4 cm). A. bimaculatus exhibited higher parasite species richness (13 taxa) compared to P. fasciatus (11 taxa). Additionally, A. bimaculatus showed higher diversity and evenness indices (H = 2.012; E = 0.784) than P. fasciatus (H = 1.176; E = 0.490). Parasite prevalence ranged from 0.80% to 31% in A. bimaculatus and from 2% to 28% in P. fasciatus (Table 1 and Table 2). It is important to note that the lower sample size for P. fasciatus reflects its naturally lower abundance in the wild. This justifies the observed differences in parasite diversity, evenness, taxa richness, and abundance between the two host species. The data presented are consistent with ecological patterns of host availability and parasite–host interactions. A comprehensive list of all parasite records in hosts of the genera Astyanax and Psalidodon from the Neotropical region is provided in Table S1 of the Supplementary Materials.
The parasite component communities of the two host species showed high similarity in both presence/absence (Jaccard similarity index = −0.06; p = 0.904) and abundance (Bray–Curtis similarity index = −0.09; p = 0.965). Furthermore, A. bimaculatus presented significantly higher diversity (U = 3.1596; p < 0.05), evenness (U = 3.9165; p < 0.05), and abundance (U = 3.5882; p < 0.05) in its parasite community compared to P. fasciatus. Positive correlations were observed between Shannon–Wiener diversity index (H), species richness, parasite abundance, and the host’s weight and length (host characteristics) (Table 3).
The similarity analyses showed that the parasite infracommunities of the two host species were similar (ANOSIM; r = −0.054, p = 0.93). The SIMPER analyses revealed that the parasite species contributing most to this similarity were the monogeneans D. kabatai (22.9%), Diaphorocleidus sp. 1 (17.7%), C. bifurcuprolatum (14.7%), C. costaricensis (8.0%), T. pinctiarum (6.9%), Diaphorocleidus sp. 2 (6.4%), and U. trinidadensis (5.4%), along with the digenean W. caririensis (13.2%) and the nematode P. (S.) hilarii (4.6%). The NMDS analysis clearly shows that the parasite infracommunities of the two host species are significantly similar (Figure 1), which is supported by the ANOSIM results.

3. Discussion

Parasite communities in sympatric hosts with comparable ecological traits and close phylogenetic relationships often exhibit similar patterns of parasite community structuring, particularly when these hosts have overlapping diets in their habitat [39]. This study corroborated the observed similarity in parasite infracommunity structure among sympatric hosts. The parasite infracommunities of A. bimaculatus and P. fasciatus, which share similar ecological characteristics and are phylogenetically related, were found to be significantly similar, as demonstrated by the ANOSIM and NMDS analyses. These findings reinforce the idea that ecological and phylogenetic factors play a key role in shaping parasite communities in closely associated host species.
The similarity observed in the parasite infracommunities of both host species suggests possibilities of host-switching events or co-evolutionary dynamics [40,41,42]. Phylogenetically related host species may harbor similar parasite communities due to shared evolutionary history [43]. Parasites often have co-evolved with their hosts, so closely related hosts may have similar susceptibility to specific parasites. Host behavior and habitat use can lead to exposure to similar parasites [44]. Parasites also can be shared by two host species through processes like host-switching or spillover [45]. If two host species are closely linked ecologically, parasites may transfer between them, leading to similarities in their parasite communities [46]. Both hosts inhabit the same environment and likely share similar resources, which can facilitate the transmission and establishment of shared parasite species. These findings align with previous studies [47,48], which suggest that sympatric hosts with overlapping diets and ecological niches often exhibit comparable parasite communities.
Through a review of parasitic helminths in South American fishes, Luque et al. (2017) [49] concluded that the Monogenea species represent the group with the highest richness, with 835 species recorded in different countries and 1133 host–parasite associations, followed by the Digenea species with 662 species recorded and 1127 host–parasite associations. The co-evolutionary associations, host-switching, and adaptations of the parasites with fish may be among the mechanisms to explain the high success of Monogenea and Digenea in their respective habitats [50]. The high richness of these two groups is interpreted as a result of site specialization, life cycle adaptation, and dietary specialization. The fact that the Monogenea species are still more diversified than the Digenea species may be associated with the development time and monoxenous life cycle, whereas the life cycle of the Digenea species is more complex due to the multiple hosts they infect, namely, a heteroxenous life cycle [50].
There are other reasons why the Monogenea species exhibit high richness: they are extremely diversified in terms of their morphological structures, primarily by the morphology of the haptor (attachment organ), which plays a crucial role in the specialization and adaptation of parasites to hosts; they have a well-resolved phylogeny (at least at the family level) and tend to exhibit host specificity, with most species infesting only one or very few host species [51]. This specificity can be understood as a result of a co-speciation process between the parasite and host and other adaptive and non-adaptive processes such as speciation through host-switching [52,53,54,55].
Several studies have described the structure of parasitic communities of the genus Astyanax and Psalidodon [22,56,57,58], noting that P. fasciatus was previously classified within the genus Astyanax [13]. According to Lizama et al. (2008) [56], studies of parasitic communities in these genera demonstrate that such species serve as intermediate hosts for various species of endoparasites, with a wide variability in the diversity of stages, a fact that may consider these species as “potential faunal indicators” [59]. The SIMPER analysis identified specific parasite species, such as the monogeneans D. kabatai and Diaphorocleidus spp., and the digenean W. caririensis as major contributors to the similarity between the parasite communities. These species may have broader host specificity or higher ecological plasticity, allowing them to exploit both host species effectively.
The results indicate that there is a significant correlation between the diversity and abundance of parasites (measured through the Shannon index and parasite richness and abundance) and host characteristics (host length and weight), both for A. bimaculatus and P. fasciatus. The positive correlation values between the Shannon index, richness, and abundance of parasites and host length indicate that as the host length increases, the diversity and abundance of parasites also increase. This can be explained by larger hosts generally having greater availability of resources and space, which may favor the colonization and establishment of a higher richness and abundance of parasites [60,61].
Similarly, the results show a positive correlation between the diversity and abundance of parasites and host weight. This suggests that heavier hosts may harbor a greater diversity and quantity of parasites. This can be attributed to the availability of food resources and the fact that heavier hosts can sustain a higher parasite load [62,63]. The relationship between host length and parasite diversity/abundance has important implications in parasitic ecology and community dynamics [64]. Therefore, in this study, the results suggest that host size plays an important role in determining parasite richness and abundance, with larger hosts having a more diverse and numerous communities of parasites.
In conclusion, this study significantly contributes to the understanding of parasitic biodiversity in freshwater fish, especially in species from the Neotropical region, being possible to identify seven new parasite–host associations. The high similarity in parasitic infracommunities between the two sympatric fish species, A. bimaculatus and P. fasciatus, suggests a possible relationship between phylogeny, habitat-sharing, and diet in structuring these communities. Additionally, the identification of new occurrences of parasites in both species expands knowledge about the geographical distribution of these organisms. These results reinforce the importance of parasitological studies in conservation areas, such as Chapada do Araripe APA region, for understanding the dynamics of parasitic communities and their relationship with the health of aquatic ecosystems. More studies regarding this may provide valuable insights for biodiversity conservation and sustainable management of natural resources in the region.

4. Materials and Methods

4.1. Study Area

The hydrographic basin of Northeastern Brazil is partly influenced by the Caatinga domain [65], among them the Salgado sub-basin. The main river of this sub-basin is the Salgado, formed by the confluence of the Batateiras River, which is the main tributary of the right bank of the Jaguaribe River [66]. The Salgado River has a length of 308 km and drains an area of 12,636 km2 covering 24 municipalities, totaling 9% of Ceará state territory. The region located between the Salgado sub-basin has four conservation units whose borders extend beyond the sub-basin boundaries, including the Chapada do Araripe Environmental Protection Area (APA) and the Sítio Fundão State Park where the Batateiras River is born in the municipality of Crato, Ceará state, Brazil [67].
The collections were performed in the Batateiras River (Figure 2), which is located between latitude 7°13′54.21″ S and longitude 39°26′11.66″ W and the climate according to the Köppen classification is BSh (semi-arid climate). The rate of evaporation typically exceeds the rate of precipitation causing high temperatures during most of the year, with rainfall concentrated in a short period [68].

4.2. Host Collection and Laboratory Procedures

Four collections were made between August and December 2018 and February and June 2019. The hosts were collected using different fishing gear like cast nets, dip nets, and trawl nets. After sampling, the fish were individualized in plastic bags, frozen, and taken to the laboratory for parasitological analysis. From each captured fish, the following data were collected: sampling date and location, standard length (cm), total weight (g), and sex. The fish specimens were identified by experts from the ichthyological collection of the Universidade Federal da Paraíba (UFPB).

4.3. Parasitological Analyzes

Fish body, fins, nasal cavity, and gills were examined for ectoparasites. The gills were removed and placed in petri dishes and examined for ectoparasite helminths using a stereomicroscope. After external analyses, a longitudinal incision in the ventral surface was made, and all internal organs were removed and separated. The visceral cavity and all organs were examined using a stereomicroscope to find endoparasites. All helminths collected were preserved in 70% ethanol solution. For parasite identification, the methods used to enhance the visualization of structures varied according to the parasite group: Myxozoa specimens were gel-mounted to visualize the spores; Monogenea specimens were mounted on permanent slides using Grey–Wess medium for the study of sclerotized structures (hooks, anchors, haptor bars, vagina, and copulatory complex); Digenea specimens were stained with Carmine and mounted in slides with Canada balsam; Nematoda specimens were clarified with lactic acid and mounted in semipermanent slides [69]. The identification was according to Cohen et al. (2013) [70], Moravec (1998) [71], and Thatcher (2006) [7].

4.4. Statistical Analysis

The parasite communities were analyzed at infracommunity (all the individuals of all parasite species in an individual fish) and component community (all the parasites in a sample of a given fish species) levels [72]. The ecological descriptors of the prevalence, mean intensity, and mean abundance of infestation/infection were calculated for each component of parasitic communities according to Bush et al. (1997) [72]. These indices are presented with the confidence intervals (95% confidence level) and the Poulin’s dispersion index (D), as suggested by Reiczigel et al. (2019) [73]. The discrepancy index was calculated to evaluate the distribution of parasite species within host populations [74]. To measure the similarity of parasitic communities between the two host species, the Jaccard (J) and the Bray–Curtis (B) indices were used. The Jaccard index is based on the presence and absence of sampled local species and ranges from 0 (different) to 1 (similar). The Bray–Curtis index (B) takes into account the differences in abundance of each parasite species shared between the two hosts [75,76]. Mean abundance, species richness, and Shannon index between both hosts were compared using the Mann–Whitney (U) test. A Spearman’s rank correlation coefficient (rs) analysis was conducted to evaluate the relationship between host characteristics and parasite diversity metrics. An analysis of similarity (ANOSIM) was conducted to test for differences in parasite communities between the two fish species. A similarity percentage analysis (SIMPER) was also used to identify which parasite taxa contributed most to the community’s similarity. Additionally, a two-dimensional non-metric multidimensional scaling (NMDS) plot was generated to visualize the parasite community structure in the two fish species, offering a graphical representation of community similarities [77]. For similarity analyses, the data were transformed using a base-10 logarithm. Statistical analyses were made using Statistica software version 7.1 and PAST software. The level of significance used was p < 0.05.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/parasitologia5010008/s1, Table S1: List of parasites recorded in hosts of the genera Astyanax and Psalidodon from the Neotropical region. References [78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163] are cited in Supplementary Materials.

Author Contributions

Conceptualization: B.A.F.d.S. and F.H.Y.; methodology: B.A.F.d.S. and F.H.Y.; formal analysis: J.M.F., B.A.F.d.S. and F.H.Y.; investigation: B.A.F.d.S.; data curation: B.A.F.d.S.; writing—original draft preparation: B.A.F.d.S. and J.M.F.; writing—review and editing: J.M.F. and F.H.Y.; supervision: F.H.Y.; project administration: B.A.F.d.S. and F.H.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP), grant number FPD-0213-00077.01.01/23 (JMF), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant numbers 304502/2022-7 and 174814/2023-2 (FHY).

Institutional Review Board Statement

The study complies with federal regulations for collection and transportation of wild animals (SISBIO #61328-1) and with ethical principles in animal experimentation (Ethics Committee of Universidade Regional do Cariri Protocol Code: #00165/2018.1).

Informed Consent Statement

Not applicable.

Data Availability Statement

Data are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Brooks, D.R.; Hoberg, E.P. Parasite systematics in the 21st century: Opportunities and obstacles. Trends Parasitol. 2011, 17, 273–275. [Google Scholar] [CrossRef] [PubMed]
  2. Poulin, R.; Morand, S. Parasite Biodiversity, 1st ed.; Smithsonian Books: Washington, DC, USA, 2004. [Google Scholar]
  3. Takemoto, R.M.; Pavanelli, G.C.; Lizama, M.A.P.; Luque, J.L.; Poulin, R. Host population density as the major determinant of endoparasite species richness in floodplain fishes of the upper Parana River, Brazil. J. Helminthol. 2005, 79, 75–84. [Google Scholar] [CrossRef] [PubMed]
  4. Luque, J.L.; Poulin, R. Metazoan parasite species richness in Neotropical fishes: Hotspots and the geography of biodiversity. Parasitology 2007, 134, 865–878. [Google Scholar] [CrossRef] [PubMed]
  5. Luque, J.L.; Mouillot, D.; Poulin, R. Parasite biodiversity and its determinants in coastal marine teleost fishes of Brazil. Parasitology 2004, 128, 671–682. [Google Scholar] [CrossRef]
  6. Marcogliese, D.J. Food webs and biodiversity: Are parasites the missing link. J. Parasitol. 2003, 89, 106–113. [Google Scholar] [CrossRef]
  7. Thatcher, V.E. Amazon Fish Parasites, 2nd ed.; Pensoft Publishers: Sofia, Bulgaria, 2006. [Google Scholar]
  8. Möller, H. Pollution and parasitism in the aquatic environment. Int. J. Parasitol. 1987, 17, 353–361. [Google Scholar] [CrossRef]
  9. Catalano, S.R.; Whittington, I.D.; Donnellan, S.C.; Gillanders, B.M. Parasites as biological tags to assess host population structure: Guidelines, recent genetic advances and comments on a holistic approach. Int. J. Parasitol: Parasites Wildl. 2014, 3, 220–226. [Google Scholar] [CrossRef]
  10. Nelson, J.S. Fishes of the World, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
  11. Eschmeyer, W.N.; Fong, J.D. Animal biodiversity, Pisces: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 2011, 3148, 26–38. [Google Scholar] [CrossRef]
  12. Reis, R.E.; Kullander, S.O.; Ferraris, C.J. Check List of the Freshwater Fishes of South and Central America; EDIPUCRS: Porto Alegre, Brazil, 2003. [Google Scholar]
  13. Terán, G.; Benitez, M.; Mirande, J.M. Opening the Trojan horse: Phylogeny of Astyanax, two new genera and resurrection of Psalidodon (Teleostei: Characidae). Zool. J. Linn. Soc. 2020, 190, 1217–1234. [Google Scholar] [CrossRef]
  14. Fricke, R.; Eschmeyer, W.N.; Van-Der-Laan, R. Catalog of Fishes: Genera, Species, References; California Academy of Sciences: San Francisco, CA, USA, 2018. [Google Scholar]
  15. Eiras, J.C.; Takemoto, R.M.; Pavanelli, G.C. Diversidade dos Parasitas de Peixe de Água Doce do Brasil; Clichetec: Maringá, Brazil, 2010; 333p. [Google Scholar]
  16. Silva, B.A.F.; Da Silva, R.J.; Yamada, F.H. Characithecium spp. (Monogenea: Dactylogyridae) from Astyanax bimaculatus (Characiformes: Characidae) in Northeast Brazil, with Description of a New Species. Acta Parasitol. 2021, 1, 1307–1315. [Google Scholar] [CrossRef]
  17. Silva, B.A.F.; Dias, K.G.A.; Silva, R.J.; Yamada, F.H. A new species of Wallinia Pearse, 1920 (Digenea: Allocreadiidae), in Astyanax bimaculatus (Linnaeus, 1758) (Characidae) in Northeast Brazil, based on morphology and DNA sequences. Parasitol. Res. 2020, 1, 37–44. [Google Scholar] [CrossRef] [PubMed]
  18. Carvalho, M.N.M.; Silva, B.A.F.; Sousa, W.B.B.; Yamada, F.H. First record of larvae of Spiroxys (Nematoda: Gnathostomatidae) parasitizing fishes in a stream of the Caatinga domain. An. Acad. Bras. Ciênc. 2021, 93, e20200472. [Google Scholar] [CrossRef] [PubMed]
  19. Carvalho, M.N.M.; Sousa, W.B.B.; Diniz, M.F.B.G.; Yamada, F.H. Diversity and community ecology of metazoan parasites in Tetragonopterus argenteus Cuvier, 1816 (Characiformes, Characidae) from the Jaguaribe River basin in Brazil. Ann. Parasitol. 2022, 68, 737–748. [Google Scholar] [PubMed]
  20. Diniz, M.F.B.G.; Sousa, W.B.B.; Carvalho, M.N.M.; Yamada, F.H. Metazoan parasite community of Hoplias malabaricus (Characiformes, Erythrinidae) in a stream of the Caatinga domain, Brazil. Ann. Parasitol. 2022, 68, 453–460. [Google Scholar]
  21. Alexandre, E.A.A.; Yamada, F.H. Diversity and ecology of parasitic fauna of the endemic Serrasalmus brandtii Lütken, 1875 from the Caatinga Domain, Brazil. J. Nat. Hist. 2022, 56, 1447–1458. [Google Scholar] [CrossRef]
  22. Antunes, D.F.; Silva, B.A.F.; Yamada, F.H. Effect of parasitism on the relative condition factor of Astyanax bimaculatus (Characiformes: Characidae), a freshwater fish from the Caatinga domain, Brazil. Int. J. Aquat. Biol. 2022, 10, 370–377. [Google Scholar]
  23. Sousa, W.B.B.; Diniz, M.F.B.G.; Carvalho, M.N.M.; Silva, B.A.F.; Yamada, F.H. First report of Diplostomum lunaschiae (Digenea, Diplostomidae) parasitizing five fish species from a stream in the Caatinga domain, Brazil. Pan-Am. J. Aquat. Sci. 2022, 17, 161–168. [Google Scholar]
  24. Sousa, W.B.B.; Diniz, M.F.B.G.; Carvalho, M.N.M.; Lopes, A.J.F.; Yamada, F.H. Parasite biodiversity of Leporinus piau Fowler, 1941 (Characiformes, Anostomidae) in a lentic ecosystem from the Salgado River basin, Caatinga Domain, Brazil. Ann. Parasitol. 2023, 69, 79–86. [Google Scholar]
  25. Sousa, W.B.B.; Diniz, M.F.B.G.; Yamada, P.O.F.; Yamada, F.H. Metazoan parasite community of Leporinus piau Fowler, 1941 (Anostomidae, Characiformes), an endemic freshwater fish from the Caatinga domain, Brazil. An. Acad. Bras. Ciênc. 2024, 96, e20240450. [Google Scholar] [CrossRef]
  26. Yamada, P.O.F.; Diniz, M.F.B.G.; Sousa, W.B.B.; Yamada, F.H.; Dias, M.T. A new species of Anacanthorus (Dactylogyridae, Anacanthorinae) parasitizing gills of Hoplias aff. malabaricus (Bloch, 1794) (Characiformes, Erythrinidae) from the Caatinga Domain. Acta Parasitol. 2024, 69, 1729–1735. [Google Scholar] [CrossRef]
  27. Falkenberg, J.M.; Lima, V.M.M.; Yamada, F.H.; Ramos, T.P.A.; Lacerda, A.C.F. Changes in parasite communities of fishes from an intermittent river in the Brazilian semi-arid, after a major interbasin water transfer. Aquat. Ecol. 2024, 58, 1–22. [Google Scholar] [CrossRef]
  28. Osuna-Cabanillas, J.M.; Marín-Enríquez, E.; Martínez-Falcon, A.P.; Timi, J.T.; Morales-Serna, F.N. Low similarity between parasite communities of ten sympatric carangid species. Parasitol. Int. 2024, 101, 102885. [Google Scholar] [CrossRef] [PubMed]
  29. Lymbery, A.J.; Lymbery, S.J.; Beatty, S.J. Fish out of water: Aquatic parasites in a drying world. Int. J. Parasitol. Parasites Wildl. 2020, 12, 300–307. [Google Scholar] [CrossRef]
  30. Poulin, R.; Fitzgerald, G.J. The potential of parasitism in the structuring of a salt marsh stickleback community. Can. J. Zool. 1987, 65, 2793–2798. [Google Scholar] [CrossRef]
  31. Guidelli, G.M.; Isaac, A.; Takemoto, R.M.; Pavanelli, G.C. Endoparasite infracommunities of Hemisorubim platyrhynchos (Valenciennes, 1840) (Pisces: Pimelodidae) of the Baia River, upper Parana River floodplain, Brazil: Specific composition and ecological aspects. Braz. J. Biol. 2003, 63, 261–268. [Google Scholar] [CrossRef]
  32. Muñoz, G.; Grutter, A.S.; Cribb, T.H. Endoparasite communities of five fish species (Labridae: Cheilininae) from Lizard Island: How important is the ecology and phylogeny of the hosts? Parasitology 2006, 132, 363–374. [Google Scholar] [CrossRef]
  33. Tavares, L.E.R.; Luque, J.L. Similarity between metazoan parasite communities of two sympatric brackish fish species from Brazil. J. Parasitol. 2008, 94, 985–989. [Google Scholar] [CrossRef]
  34. Alarcos, A.J.; Timi, J.T. Parasite communities in three sympatric flounder species (Pleuronectiformes: Paralichthyidae): Similar ecological filters driving toward repeatable assemblages. Parasitol. Res. 2012, 110, 2155–2166. [Google Scholar] [CrossRef]
  35. Tavares-Dias, M.; Oliveira, M.S.B.; Gonçalves, R.A.; Silva, L.M.A. Ecology and seasonal variation of parasites in wild Aequidens tetramerus, a Cichlidae from the Amazon. Acta Parasit. 2014, 59, 158–164. [Google Scholar] [CrossRef]
  36. Alcântara, N.M.; Tavares-Dias, M. Structure of the parasites communities in two Erythrinidae fish from Amazon River system (Brazil). Rev. Bras. Parasitol. Vet. 2015, 24, 183–190. [Google Scholar] [CrossRef]
  37. Lima, L.B.; Bellay, S.; Giacomini, H.C.; Isaac, A.; Lima-Junior, D.P. Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain. Parasitology 2016, 143, 343–349. [Google Scholar] [CrossRef] [PubMed]
  38. Pantoja, C.S.; Pereira, F.B.; Santos, C.P.; Luque, J.L. Morphology and molecular characterization hold hands: Clarifying the taxonomy of Hysterothylacium (Nematoda: Anisakidae) larval forms. Parasitol. Res. 2016, 115, 4353–4364. [Google Scholar] [CrossRef] [PubMed]
  39. Brooks, D.R. Testing the context and extent of host-parasite coevolution. Syst. Zool. 1979, 28, 299–307. [Google Scholar] [CrossRef]
  40. Hafner, M.S.; Nadler, S.A. Phylogenetic trees support the coevolution of parasites and their hosts. Nature 1988, 332, 258–259. [Google Scholar] [CrossRef]
  41. Hoberg, E.P.; Brooks, D.R. A macroevolutionary mosaic: Episodic host-switching, geographical colonization and diversification in complex host-parasite systems. J. Biogeogr. 2008, 35, 1533–1550. [Google Scholar] [CrossRef]
  42. Locke, S.A.; McLaughlin, J.D.; Marcogliese, D.J. Predicting the similarity of parasite communities in freshwater fishes using the phylogeny, ecology and proximity of hosts. Oikos 2012, 122, 73–83. [Google Scholar] [CrossRef]
  43. Ezenwa, V.O.; Archie, E.A.; Craft, M.E.; Hawley, D.M.; Martin, L.B.; Moore, J.; White, L. Host behaviour–parasite feedback: An essential link between animal behaviour and disease ecology. Proc. R. Soc. B 2016, 283, 20153078. [Google Scholar] [CrossRef]
  44. Braga, M.P.; Razzolini, E.; Boeger, W.A. Drivers of parasite sharing among neotropical freshwater fishes. J. Anim. Ecol. 2014, 84, 487–497. [Google Scholar] [CrossRef]
  45. Dallas, T.; Holian, L.A.; Foster, G. What determines parasite species richness across host species? J. Anim. Ecol. 2020, 89, 1750–1753. [Google Scholar] [CrossRef]
  46. Pantoja, W.M.F.; Silva, L.V.F.; Tavares-Dias, M. Are similar the parasite communities structure of Trachelyopterus coriaceus and Trachelyopterus galeatus (Siluriformes: Auchenipteridae) in the Amazon basin? Braz. J. Vet. Parasitol. 2016, 25, 46–53. [Google Scholar] [CrossRef]
  47. Perez-Ponce de Leon, G.; Choudhury, A. Biogeography of helminth parasites of freshwater fishes in Mexico: The search for patterns and processes. J. Biogeogr. 2005, 32, 645–659. [Google Scholar] [CrossRef]
  48. Borges, W.F.; Oliveira, M.S.B.; Tavares-Dias, M. Diversity of metazoan parasites in fish Triportheus angulatus and Triportheus auritus living in sympatry in the Brazilian Amazon. Braz. J. Vet. Parasitol. 2021, 30, e008221. [Google Scholar] [CrossRef] [PubMed]
  49. Luque, J.L.; Pereira, F.B.; Alves, P.V.; Oliva, M.E.; Timi, J.T. Helminth parasites of South American fishes: Current status and characterization as a model for studies of biodiversity. J. Helminthol. 2017, 91, 150–164. [Google Scholar] [CrossRef] [PubMed]
  50. Cribb, T.H.; Chisholm, L.A.; Bray, R.A. Diversity in the Monogenea and Digenea: Does lifestyle matter? Int. J. Parasitol. 2002, 32, 321–328. [Google Scholar] [CrossRef]
  51. Poulin, R. The evolution of monogenean diversity. Int. J. Parasitol. 2002, 32, 245–254. [Google Scholar] [CrossRef]
  52. Poulin, R. Determinants of host-specificity in parasites of freshwater fishes. Int. J. Parasitol. 1992, 22, 753–758. [Google Scholar] [CrossRef]
  53. Boeger, W.A.; Kritsky, D.C. Coevolution of the Monogenoidea (Platyhelminthes) based on a revised hypothesis of parasite phylogeny. Int. J. Parasitol. 1997, 27, 1495–1511. [Google Scholar] [CrossRef]
  54. Sasal, P.; Desdevises, Y.; Morand, S. Host-specialization and species diversity in fish parasites: Phylogenetic conservatism? Ecography 1998, 21, 639–643. [Google Scholar] [CrossRef]
  55. Šimková, A.; Verneau, O.; Gelnar, M.; Morand, S. Specificity and specialization of congeneric monogeneans parasitizing cyprinid fish. Evolution 2006, 60, 1023–1037. [Google Scholar] [CrossRef]
  56. Lizama, M.A.P.; Takemoto, R.M.; Pavanelli, G.C. Ecological aspects of metazoan parasites of Astyanax altiparanae Garutti & Britski, 2000 (Characidae) of the upper Paraná River floodplain, Brazil. Bol. Do Inst. De Pesca 2008, 34, 527–533. [Google Scholar]
  57. Azevedo, G.B.; Madi, R.R.; Ueta, M.T. Metazoários parasitas de Astyanax altiparanae (Pisces: Characidae) na Fazenda Rio das Pedras, Campinas, SP, Brasil. Bioikos 2007, 21, 89–96. [Google Scholar]
  58. Vieira-Menezes, F.G.; Costa, D.P.C.; Brasil-Sato, M.C. Nematodes of Astyanax fasciatus (Actinopterygii: Characidae) and their parasitic indices in the São Francisco River, Brazil. Braz. J. Vet. Parasitol. 2017, 26, 10–16. [Google Scholar] [CrossRef] [PubMed]
  59. Miguel, B.S.; Ramos, I.P.; Zago, A.C.; Delariva, R.L.; Franceschini, L. Parasites of Astyanax lacustris (Pisces, Characiformes) from Brazilian streams. Braz. J. Vet. Parasitol. 2024, 33, e000124. [Google Scholar] [CrossRef] [PubMed]
  60. Poulin, R. Body size vs abundance among parasite species: Positive relationships? Ecography 1999, 22, 246–250. [Google Scholar] [CrossRef]
  61. Iyaji, F.O.; Etim, L.; Eyo, J. Parasite assemblages in fish hosts. Bio-Research 2010, 7, 561–570. [Google Scholar] [CrossRef]
  62. Rhode, K. Ecology of Marine Parasites, 2nd ed.; University of Queensland Press: Brisbane, Australia, 1993; 304p. [Google Scholar]
  63. Muñoz, G.; Valdebenito, V.; George-Nascimento, M. La dieta y la fauna de parásitos metazoos del torito Bovichthys chilensis Egan 1914 (Pisces: Bovichthydae) en la costa de Chile centrosur: Variaciones geográficas y ontogenéticas. Rev. Chil. Hist. Nat. 2002, 75, 661–671. [Google Scholar] [CrossRef]
  64. Muñoz, G.; Cribb, T.H. Infracommunity structure of parasites of Hemigymnus melapterus (Pisces: Labridea) from Lizard Island, Australia: The importance of habitat and parasite body size. J. Parasitol. 2005, 91, 38–44. [Google Scholar] [CrossRef]
  65. Gaiser, T.; Krol, M.; Frischkorn, H.; Araújo, J.C. Global Change and Regional Impacts: Water Availability and Vulnerability of Ecosystems and Society in the Semiarid Northeast of Brazil; Springer: Berlin, Germany, 2003. [Google Scholar]
  66. COGERH (Companhia de Gestão dos Recursos Hídricos) e FUNCEME (Fundação Cearense de Meteorologia). Available online: http://www.hidro.ce.gov.br/ (accessed on 23 July 2016).
  67. Rosa, R.S.; Menezes, N.A.; Britski, H.A.; Costa, W.J.E.M.; Groth, F. Diversidade, padrões de distribuição e conservação dos peixes da Caatinga. In Ecologia e Conservação da CAATINGA, 1st ed.; Leal, I.L., Ed.; Editora Universitária UFPE: Recife, Brazil, 2003; pp. 135–180. [Google Scholar]
  68. COGERH (Companhia de Gestão dos Recursos Hídricos). 1999. Available online: http://www.hidro.ce.gov.br/ (accessed on 2 April 2024).
  69. Eiras, J.C.; Takemoto, R.M.; Pavanelli, G.C. Métodos de Estudo e Técnicas Laboratoriais em Parasitologia de Peixes, 2nd ed.; Eduem: Maringá, Brazil, 2006; p. 199. [Google Scholar]
  70. Cohen, S.C.; Justo, M.C.N.; Kohn, A. South American Monogenoidea Parasites of Fishes, Amphibians and Reptiles; Oficina de Livros: Rio de Janeiro, Brazil, 2013; p. 662. [Google Scholar]
  71. Moravec, F. Nematodes of Freshwater Fishes of the Neotropical Region; Academia Praha: Prague, Czech Republic, 1998; p. 464. [Google Scholar]
  72. Bush, A.O.; Lafferty, K.D.; Lotz, J.M.; Shostak, A.W. Parasitology Meets Ecology on Its Own Terms: Margolis et al. Revisited. J. Parasitol. 1997, 83, 575–583. [Google Scholar] [CrossRef]
  73. Reiczigel, J.; Marozzi, M.; Fábián, I.; Rózsa, L. Biostatistics for Parasitologists—A Primer to Quantitative Parasitology. Trends Parasitol. 2019, 35, 277–281. [Google Scholar] [CrossRef]
  74. Poulin, R. The disparity between observed and uniform distributions: A new look at parasite aggregation. Int. J. Parasitol. 1993, 23, 937–944. [Google Scholar] [CrossRef]
  75. Ludwig, J.A.; Reynolds, J.F. Statistical Ecology: A Primer in Methods and Computing; John Wiley & Sons: New York, NY, USA, 1988; p. 368. [Google Scholar]
  76. Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing Company: Oxford, UK, 2013; p. 256. [Google Scholar]
  77. Hayward, A.; Tsuboi, M.; Owusu, C.; Kotrschal, A.; Büchel, S.D.; Zidar, J.; Cornwallis, C.K.; Løvlie, H.; Kolm, N. Evolutionary associations between host traits and parasite load: Insights from Lake Tanganyika cichlids. J. Evol. Biol. 2017, 30, 1056–1067. [Google Scholar] [CrossRef] [PubMed]
  78. Gioia, I.; Cordeiro, N.S.; Artigas, P.T. Henneguya intracornea n. sp. (Myxozoa: Myxosporea), parasita do olho do lambari, Astyanax scabripinnis (Jenyns, 1842) (Osteichthyes, Characidae). Mem. Inst. Oswaldo Cruz 1986, 81, 401–407. [Google Scholar] [CrossRef]
  79. Guimarães, J.R.A. Mixosporídeos da Ictiofauna Brasileira. Ph.D. Thesis, Faculdade de Medicina de São Paulo, São Paulo, Brazil, 1931. [Google Scholar]
  80. Guimarães, J.R.A.; Bergamin, F. Considerações sobre as ictioepizootias produzidas pelos mixosporídeos do gênero Henneguya Thélohan, 1892—Henneguya travassosi sp. n. Rev. Ind. Anim. 1933, 10, 1151–1156. [Google Scholar] [CrossRef]
  81. Cordeiro, N.S.; Gioia, I. Mixosporídeos da ictiofauna brasileira. II: Henneguya hoimba n. sp. (Myxosporea, Myxobolidae). In Proceedings of the Anais do X Congresso da Sociedade Brasileira de Parasitologia, Salvador, Brazil, 2–8 June 1987; p. 176. [Google Scholar]
  82. Camargo, A.D.A.; Negrelli, D.C.; Pedro, N.H.O.; Azevedo, R.K.D.; Silva, R.J.D.; Abdallah, V.D. Metazoan parasite of lambari Astyanax altiparanae, collected from the Peixe River, São Paulo, southeast of Brazil. Ciênc. Rural 2016, 46, 876–880. [Google Scholar] [CrossRef]
  83. Vital, P.; Corral, L.; Matos, E.; Azevedo, C. Ultrastructural aspects of the myxosporean Henneguya astyanax n. sp. (Myxozoa: Myxobolidae), a parasite of the Amazonian teleost Astyanax keithi (Characidae). Dis. Aquat. Organ. 2003, 53, 55–60. [Google Scholar] [CrossRef]
  84. Barassa, B.; Cordeiro, N.S.; Arana, S. A new species of Henneguya, a gill parasite of Astyanax altiparanae (Pisces: Characidae) from Brazil, with comments on histopathology and seasonality. Mem. Inst. Oswaldo Cruz 2003, 98, 761–765. [Google Scholar] [CrossRef]
  85. Milanin, T.; Mathews, P.D.; Mertins, O.; Tavares, L.E.; Silva, M.R.; Maia, A.A. Molecular phylogeny of the gill parasite Henneguya (Myxosporea: Myxobolidae) infecting Astyanax lacustris (Teleostei: Characidae) from fish farm in Brazil. Microb. Pathog. 2018, 123, 372–376. [Google Scholar] [CrossRef]
  86. Ferrari-Hoeinghaus, A.P.; Takemoto, R.M.; Oliveira, L.D.; Makrakis, M.C.; Baumgartner, G. Host-parasite relationships of monogeneans in gills of Astyanax altiparanae and Rhamdia quelen of the São Francisco Verdadeiro River, Brazil. Parasite 2006, 13, 315–320. [Google Scholar] [CrossRef]
  87. Gallas, M.; Calegaro-Marques, C.; Amato, S.B. A new species of Cacatuocotyle (Monogenea, Dactylogyridae) parasitizing two species of Astyanax (Ostariophysi, Characidae) in southern Brazil. Acta Parasitol. 2014, 59, 638–642. [Google Scholar] [CrossRef]
  88. Negrelli, D.C.; Abdallah, V.D.; Azevedo, R.K. Metazoan parasites of the lambari Astyanax altiparanae collected in the Batalha River, State of São Paulo, Brazil. Braz. J. Biol. 2018, 78, 535–539. [Google Scholar] [CrossRef]
  89. Franco, E.F.M.; Caspeta-Mandujano, J.M.; Salgado-Maldonado, G. New species of Cacatuocotyle (Monogenoidea, Dactylogyridae) parasitizing the anus and the gill lamellae of Astyanax aeneus (Pisces, Ostariophysi: Characidae) from the Rio Lacantún basin in the Biosphere Reserve of Montes Azules, Chiapas, Mexico. Parasitol. Res. 2013, 112, 199–205. [Google Scholar] [CrossRef] [PubMed]
  90. Salgado-Maldonado, G.; Mendoza-Franco, E.F.; Caspeta-Mandujano, J.M.; Ramírez-Martínez, C. Data on monogenean (Platyhelminth) parasites in 11 populations of Astyanax aeneus (Pisces: Teleostei) in a neotropical river in Chiapas, south Mexico. Data Brief 2019, 24, 103936. [Google Scholar] [CrossRef] [PubMed]
  91. Zago, A.C.; Franceschini, L.; Müller, M.I.; da Silva, R.J. A new species of Cacatuocotyle (Monogenea, Dactylogyridae) parasitizing Astyanax spp. (Characiformes, Characidae) from Brazil, including molecular data and a key to species identification. Acta Parasitol. 2018, 63, 261–269. [Google Scholar] [CrossRef] [PubMed]
  92. Acosta, A.A.; Queiroz, J.; Brandão, H.; Silva, R.J.D. Helminth fauna of Astyanax fasciatus Cuvier, 1819, in two distinct sites of the Taquari River, São Paulo State, Brazil. Braz. J. Biol. 2015, 75, 242–250. [Google Scholar] [CrossRef]
  93. Mendoza-Franco, E.F.; Reina, R.G.; Torchin, M.E. Dactylogyrids (Monogenoidea) parasitizing the gills of Astyanax spp. (Characidae) from Panama and Southeast Mexico, a new species of Diaphorocleidus and a proposal for Characithecium n. gen. J. Parasitol. 2009, 95, 46–55. [Google Scholar] [CrossRef]
  94. Caspeta-Mandujano, J.M.; Cabañas-Carranza, G.; Mendoza-Franco, E. Helmintos Parásitos de Peces Dulceacuícolas Mxicanos. Caso Morelos; UAEM/AGT Editorial: Cuernavaca/México DF, Mexico, 2009; pp. 1–129. [Google Scholar]
  95. Mora-Bonilla, A. Comunidades de helmintos parásitos de carácidos (Teleostei: Characidae) en México. Bachelor’s Thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2010; p. 87. [Google Scholar]
  96. Pérez-Ponce de León, G.P.; Rosas-Valdez, R.; Aguilar-Aguilar, R.; Mendoza-Garfias, B.; Mendoza-Palmero, C.; García-Prieto, L.; Domínguez-Domínguez, O. Helminth parasites of freshwater fishes, Nazas River basin, northern Mexico. Check List 2010, 6, 26–35. [Google Scholar] [CrossRef]
  97. Salgado-Maldonado, G.; Caspeta-Mandujano, J.M.; Moravec, F.; Soto-Galera, E.; Rodiles-Hernández, R.; Cabañas-Carranza, G.; Montoya-Mendoza, J. Helminth parasites of freshwater fish in Chiapas, Mexico. Parasitol. Res. 2011, 108, 31–59. [Google Scholar] [CrossRef]
  98. Aguilar-Aguilar, R.; Martínez-Aquino, A.; Espinosa-Pérez, H.; Pérez-Ponce de León, G. Helminth parasites of freshwater fishes from Cuatro Ciénegas, Coahuila, in the Chihuahuan Desert of Mexico: Inventory and biogeographical implications. Integr. Zool. 2014, 9, 328–339. [Google Scholar] [CrossRef]
  99. Jiménez-Sánchez, A.; Sánchez-Nava, P.; Romero, J.R.; Nava, B.F. Monogéneos de Astyanax aeneus (Characidae) y Oreochromis niloticus (Cichlidae) en la cuenca del río Ixtapan, México. Rev. Mex. Biodivers. 2019, 90, 1–7. [Google Scholar] [CrossRef]
  100. Gallas, M.; Calegaro-Marques, C.; Amato, S.B. A new species of Characithecium (Monogenea: Dactylogyridae) from the external surface and gills of two species of Astyanax (Ostariophysi: Characidae) in southern Brazil. Rev. Mex. Biodivers. 2016, 87, 903–907. [Google Scholar] [CrossRef]
  101. Jogunoori, W.; Kritsky, D.C.; Venkatanarasaiah, J. Neotropical Monogenoidea. 46. Three new species from the gills of introduced aquarium fishes in India, the proposal of Heterotylus n. g and Diaphorocleidus n. g, and the reassignment of some previously described species of Urocleidoides Mizelle & Price, 1964 (Polyonchoinea: Dactylogyridae). Syst. Parasitol. 2004, 58, 115–124. [Google Scholar] [CrossRef]
  102. Almeida, K.D.S.S.; Cohen, S.C. Diversidade de Monogenea (Platyhelminthes) parasitos de Astyanax altiparanae do reservatório da Usina Hidrelétrica de Itaipu. Saúde Ambiente Rev. 2011, 6, 31–41. [Google Scholar]
  103. Kritsky, D.C.; Leiby, P.D. Dactylogyridae (Monogenea) from the freshwater fish, Astyanax fasciatus (Cuvier), in Costa Rica, with descriptions of Jainus hexops sp. n., Urocleidoides costaricensis, and U. heteroancistrium combs. n. Proceed. Helminthol. Soc. Wash. 1972, 39, 227–230. [Google Scholar]
  104. Abdallah, V.D.; de Azevedo, R.K.; da Silva, R.J. Trinibaculum altiparanae sp. n., a new dactylogyrid species (Monogenea) of the Astyanax altiparanae (Osteichthyes: Characidae) in the Peixe river, Southeastern Brazil. Neotrop. Helminthol. 2013, 7, 211–217. [Google Scholar] [CrossRef]
  105. Narciso, R.B.; Brandão, H.; Yamada, F.H.; Benine, R.C.; da Silva, R.J. A new species of Trinibaculum (Monogenea: Dactylogyridae) parasite of the gills of Astyanax fasciatus (Cuvier, 1819) (Characiformes: Characidae) in a neotropical river, São Paulo state, Brazil. Neotrop. Helminthol. 2014, 8, 85–95. [Google Scholar] [CrossRef]
  106. Mendoza-Franco, E.F.; Scholz, T.; Vivas-Rodríguez, C.; Vargas-Vázquez, J. Monogeneans of freshwater fishes from cenotes (sinkholes) of the Yucatan Peninsula, Mexico. Folia Parasitol. 1999, 46, 267–273. [Google Scholar]
  107. Salgado-Maldonado, G.; Aguilar-Aguilar, R.; Cabañas-Carranza, G.; Soto-Galera, E.; Mendoza-Palmero, C. Helminth parasites in freshwater fish from the Papaloapan river basin, Mexico. Parasitol. Res. 2005, 96, 69–89. [Google Scholar] [CrossRef]
  108. Molnar, K.; Hanek, G.; Fernando, C.H. Ancyrocephalids (Monogenea) from freshwater fishes of Trinidad. J. Parasitol. 1974, 60, 914–920. [Google Scholar] [CrossRef]
  109. Gioia, I.; Cordeiro, N.S.; Artigas, P.T. Urocleidoides astyanacis n. sp. (Monogenea, Ancyrocephalinae) from freshwater characidians on the genus Astyanax. Mem. Inst. Oswaldo Cruz. 1988, 83, 13–15. [Google Scholar] [CrossRef]
  110. Kritsky, D.C.; Thatcher, V.E. Monogenetic trematodes (Monopisthocotylea: Dactylogyridae) from freshwater fishes of Colombia, South America. J. Helminthol. 1974, 48, 59–66. [Google Scholar] [CrossRef]
  111. López-Jiménez, S. Estudio Parasitológico de los peces de aguas dulces del estado de Tabasco. Gac. Regional Sigolfo 2001, 3, 8–10. [Google Scholar]
  112. Texta-Camacho, P.R. Desarrollo de un catálogo taxonómico de helmintos parásitos de peces del estado de Tabasco. Bachelor’s Thesis, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico, 2003; 87p. [Google Scholar]
  113. Salgado-Maldonado, G.; Cabañas-Carranza, G.; Soto-Galera, E.; Pineda-López, R.F.; Caspeta-Mandujano, J.M.; Aguilar Castellanos, E.; Mercado-Silva, N. Helminth parasites of freshwater fishes of the Pánuco river basin, east central Mexico. Comp. Parasitol. 2004, 71, 190–203. [Google Scholar] [CrossRef] [PubMed]
  114. Múgica-Ruiz, E.; Caspeta-Mandujano, J.M. Helmintos parásitos de Astyanax aeneus del río Cuautla. Inven. La Génesis De La Cult. Univ. En Morelos 2018, 6, 57–60. [Google Scholar]
  115. Salgado-Maldonado, G.; Novelo-Turcotte, M.T.; Caspeta-Mandujano, J.M.; Vázquez-Hurtado, G.; Quiroz-Martínez, B.; Mercado-Silva, N.; Favila, M. Host specificity and the structure of helminth parasite communities of fishes in a Neotropical river in Mexico. Parasite 2016, 23, 61. [Google Scholar] [CrossRef]
  116. Kritsky, D.C.; Fritts, T.H. Monogenetic trematodes from Costa Rica with the proposal of Anacanthocotyle gen. n. (Gyrodactylidae: Isancistrinae). Proc. Helminthol. Soc. Wash. 1970, 37, 63–68. [Google Scholar]
  117. Loya-Cancino, K.F. Diversidad de helmintos parásitos de Astyanax mexicanus (Teleostei: Characidae) en el Estado de Coahuila. Bachelor’s Thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2012; 53p. [Google Scholar]
  118. Razo-Mendívil, U.; García-Vásquez, A.; Rubio-Godoy, M. Spot the difference: Two cryptic species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) infecting Astyanax aeneus (Actinopterygii, Characidae) in Mexico. Parasitol. Int. 2016, 65, 389–400. [Google Scholar] [CrossRef]
  119. Scholz, T.; Aguirre-Macedo, M.L.; Choudhury, A. Auriculostoma astyanace n. gen., n. sp. (Digenea: Allocreadiidae), from the banded astyanax, Astyanax fasciatus (Characiformes: Characidae), from Nicaragua, with a reevaluation of Neotropical Crepidostomum spp. J. Parasitol. 2004, 90, 1128–1133. [Google Scholar] [CrossRef]
  120. Razo-Mendívil, U.; Mendoza-Garfias, B.; Pérez-Ponce de León, G.; Rubio-Godoy, M. A new species of Auriculostoma (Digenea: Allocreadiidae) in the Mexican tetra Astyanax mexicanus (Actinopterygii: Characidae) from Central Veracruz, Mexico, described with the use of morphological and molecular data. J. Parasitol. 2014, 100, 331–338. [Google Scholar] [CrossRef]
  121. Choudhury, A.; Daverdin, R.H.; Brooks, D.R. Wallinia chavarriae n. sp. (Trematoda: Macroderoididae) in Astyanax aeneus (Günther, 1860) and Bryconamericus scleroparius (Regan, 1908) (Osteichthyes: Characidae) from the Área de Conservación Guanacaste, Costa Rica. J. Parasitol. 2002, 88, 107–112. [Google Scholar] [CrossRef]
  122. Pérez-Ponce de León, G.; Razo-Mendívil, U.; Mendoza-Garfias, B.; Rubio-Godoy, M.; Choudhury, A. A new species of Wallinia Pearse, 1920 (Digenea: Allocreadiidae) in Astyanax mexicanus (Characidae) from Mexico revealed by morphology and sequences of the 28S ribosomal RNA gene. Folia Parasitol. 2015, 62, 018. [Google Scholar] [CrossRef]
  123. Dias, K.G.; Müller, M.I.; de Almeida, A.C.; da Silva, R.J.; de Azevedo, R.K.; Pérez-Ponce de León, G.; Abdallah, V.D. A new species of Wallinia Pearse, 1920 (Digenea: Allocreadiidae) collected from Astyanax fasciatus (Cuvier, 1819) and A. lacustris Lucena and Soares, 2016 (Characiformes: Characidae) in Brazil based on morphology and DNA sequences. Parasitol. Res. 2018, 117, 2847–2854. [Google Scholar] [CrossRef] [PubMed]
  124. Hernández-Mena, D.I.; Pinacho-Pinacho, C.D.; García-Varela, M.; Mendoza-Garfias, B.; Pérez-Ponce de León, G. Description of two new species of allocreadiid trematodes (Digenea: Allocreadiidae) in Middle American freshwater fishes using an integrative taxonomy approach. Parasitol. Res. 2019, 118, 421–432. [Google Scholar] [CrossRef] [PubMed]
  125. Travassos, L.; Artigas, P.; Pereira, C. Fauna helminthologica dos peixes de água doce do Brasil. Arq. Inst. Biol. 1928, 1, 5–68. [Google Scholar]
  126. Kohn, A.; Fernandes, B.M.M.; Baptista-Farias, M.F.D. Redescription of Prosthenhystera obesa (Diesing, 1850) (Callodistomidae, Digenea) with new host records and data on morphological variability. Mem. Inst. Oswaldo Cruz 1997, 92, 171–179. [Google Scholar] [CrossRef]
  127. Vasconcelos, A.C.P.; Lopes, A.C.M.; dos Santos, J.M.S.; Jeraldo, V.D.L.S.; de Melo, C.M.; Madi, R.R. Molecular analysis and biodiversity of metazoan parasites of the yellow tail lambari, Astyanax aff. bimaculatus (Teleostei, Characidae), in Lower San Francisco, northeastern Brazil. Neotrop. Helminthol. 2013, 7, 41–49. [Google Scholar] [CrossRef]
  128. Kloss, G.R. Helmintos parasitos de espécies simpátricas de Astyanax (Pisces: Characidae). Pap. Avulsos Dep. Zool. São Paulo 1966, 18, 189–219. [Google Scholar] [CrossRef]
  129. Thatcher, V.E. Paramphistomidae (Trematoda: Digenea) de peixes de água doce: Dois novos gêneros da Colômbia e uma redescrição de Dadaytrema oxycephala (Diesing, 1836) Travassos, 1934, da Amazônia. Acta Amaz. 1979, 9, 203–208. [Google Scholar] [CrossRef]
  130. Abdallah, V.D.; Azevedo, R.K.; Luque, J.L. Metazoários parasitos dos lambaris Astyanax bimaculatus (Linnaeus, 1758), A. parahybae Eigenmann, 1908 e Oligosarcus hepsetus (Cuvier, 1829) (Osteichthyes: Characidae), do rio Guandu, estado do Rio de Janeiro, Brasil. Rev. Bras. Parasitol. Vet. 2004, 13, 57–63. [Google Scholar]
  131. Espinal-Carrión, T.; López-López, E. Helminths and lipid peroxidation in Astyanax aeneus (Pisces: Characidae) from a river in the humid subtropics of southeastern Mexico. Dis. Aquat. Org. 2010, 88, 215–224. [Google Scholar] [CrossRef]
  132. Salgado-Maldonado, G. Helminth parasites of freshwater fish from Central America. Zootaxa 2008, 1915, 29–53. [Google Scholar] [CrossRef]
  133. Kohn, A.; Fernandes, B.M.; Gibson, D.I.; Fróes, O.M. On the Brazilian species of halipegine genera (Trematoda: Derogenidae) from fishes, with new morphological data, hosts, and synonyms. Syst. Parasitol. 1990, 16, 201–211. [Google Scholar] [CrossRef]
  134. Scholz, T.; Vargas-Vázquez, J. Trematodes from fishes of the Río Hondo River and freshwater lakes of Quintana Roo, Mexico. J. Helminthol. Soc. Wash. 1999, 65, 91–94. [Google Scholar]
  135. Scholz, T.; Vargas-Vázquez, J.; Salgado-Maldonado, G. Revision of Genarchella species (Digenea: Derogenidae) parasitizing freshwater fishes in Mexico and Central America. J. Nat. Hist. 1995, 29, 1403–1417. [Google Scholar] [CrossRef]
  136. Kohn, A.; Fernandes, B.M.M. Estudo comparativo dos helmintos parasitos de peixes do Rio Mogi Guassu, coletados nas excursões realizadas entre 1927 e 1985. Mem. Inst. Oswaldo Cruz 1987, 82, 483–500. [Google Scholar] [CrossRef] [PubMed]
  137. Violante-González, J.; Aguirre-Macedo, M.L.; Mendoza-Franco, E.F. A checklist of metazoan parasites of fish from Tres Palos Lagoon, Guerrero, Mexico. Parasitol. Res. 2007, 102, 151–161. [Google Scholar] [CrossRef]
  138. Lunaschi, L.I. Primer registro del género Bacciger Nicoll, 1914 (Fellodistomidae, Baccigerinae) en peces de agua dulce de Argentina. Physis 1998, 56, 17–19. [Google Scholar]
  139. Volonterio, O.; Ponce-De-León, R. Description of Dendrorchis retrobiloba n. sp. (Digenea: Gorgoderidae) from Astyanax fasciatus (Teleostei: Characidae) from southern Uruguay, with an emended diagnosis of the genus Dendrorchis. J. Parasitol. 2005, 91, 1204–1208. [Google Scholar] [CrossRef]
  140. Gallas, M.; Utz, L.R.P. First report of Dendrorchis retrobiloba Volonterio & Ponce de León, 2005 (Digenea, Gorgoderidae) in Astyanax aff. fasciatus (Cuvier, 1819) (Characiformes, Characidae) from southern Brazil. Check List 2019, 15, 357. [Google Scholar] [CrossRef]
  141. Kohn, A.; Fernandes, B.M.M.; Gibson, D.I. Chalcinotrema thatcheri n. sp. (Digenea: Haploporidae) from Brazilian freshwater fishes, a redescription of C. ruedasueltensis Thatcher, 1978 and comments on the validity of the genus. Syst. Parasitol. 1999, 44, 211–215. [Google Scholar] [CrossRef]
  142. Szidat, L. Saccocoelioides octavus n. sp., a new species of the genus Saccocoelioides Szidat, 1954 (Trematoda, Haploporinae Looss 1902). Rev. Mus. Argent. Cienc. Nat. Bernardino Rivadavia Zool. 1970, 10, 87–100. [Google Scholar]
  143. Gallas, M.; Utz, L.R.P. Revalidation of Saccocoelioides bacilliformis (Digenea, Haploporidae) parasitizing species of Astyanax (Characiformes, Characidae) from southern Brazil. Iheringia Sér. Zool. 2019, 109, e2019039. [Google Scholar] [CrossRef]
  144. Pozza, A.; Fábio, L.I.M.A.; Haas, M.L.; Albornoz, P.C.L. Clinostomum sp. (Digenea: Clinostomidae) e Ascocotyle sp. (Digenea: Heterophyidae): Metacercárias com potencial zoonótico em peixes da bacia do Rio Tramandaí, sul do Brasil. Bol. Inst. Pesca 2018, 44, 105–109. [Google Scholar] [CrossRef]
  145. Scholz, T.; Vargas-Vázquez, J.; Aguirre-Macedo, L.; Vidal-Martínez, V.M. Species of Ascocotyle Looss, 1899 (Digenea: Heterophyidae) of the Yucatan Peninsula, Mexico, and notes on their life-cycles. Syst. Parasitol. 1997, 36, 161–181. [Google Scholar] [CrossRef]
  146. Salgado-Maldonado, G.; Cabañas-Carranza, G.; Mandujano, J.M.C.; Soto-Galera, E.; Mayén-Peña, E.; Brailovsky, D.; Báez-Valé, R. Helminth parasites of freshwater fishes of the Balsas River drainage basin of southwestern Mexico. Comp. Parasitol. 2001, 68, 196–203. [Google Scholar]
  147. Kohn, A.; Moravec, F.; Cohen, S.C.; Canzi, C.; Takemoto, R.M.; Fernandes, B.M. Helminths of freshwater fishes in the reservoir of the Hydroelectric Power Station of Itaipu, Paraná, Brazil. Check List 2011, 7, 681–690. [Google Scholar] [CrossRef]
  148. Ortega-Olivares, M.P.; Garcia-Prieto, L.; Garcia-Varela, M. Gryporhynchidae (Cestoda: Cyclophyllidea) in Mexico: Species list, hosts, distribution and new records. Zootaxa 2014, 3795, 101–125. [Google Scholar] [CrossRef]
  149. Gallas, M.; Utz, L.R.P. Quadrigyrus torquatus cystacants Van Cleave, 1920 (Acanthocephala: Quadrigyridae) parasitizing species of Astyanax (Characiformes: Characidae) from southern Brazil. Biota Neotrop. 2019, 19, e20180693. [Google Scholar] [CrossRef]
  150. Fujimoto, R.Y.; Barros, Z.M.N.D.; Marinho-Filho, A.N.; Diniz, D.G.; Eiras, J.C. Parasites of four ornamental fish from the Chumucuí River (Bragança, Pará, Brazil). Rev. Bras. Parasitol. Vet. 2013, 22, 34–38. [Google Scholar] [CrossRef]
  151. Abdallah, V.D.; De Azevedo, R.K.; Carvalho, E.D.; Da Silva, R.J. New host and distribution records for nematode parasites of freshwater fishes from São Paulo State, Brazil. Neotrop. Helminthol. 2012, 6, 43–57. [Google Scholar] [CrossRef]
  152. Mancini, M.A.; Biolé, F.G.; Salinas, V.H.; Guagliardo, S.E.; Tanzola, R.D.; Morra, G. Prevalence, intensity and ecological aspects of Contracaecum sp. (Nematode: Anisakidae) in freshwater fish of Argentina. Neotrop. Helminthol. 2014, 8, 111–122. [Google Scholar] [CrossRef]
  153. Luque, J.L.; Aguiar, J.C.; Vieira, F.M.; Gibson, D.I.; Santos, C.P. Checklist of Nematoda associated with the fishes of Brazil. Zootaxa 2011, 3082, 1–88. [Google Scholar] [CrossRef]
  154. Travassos, L. Uma nova Capillaria parasita de peixes de água doce: Capillaria sentinosa n. sp. Bol. Biol. 1927, 10, 215–217. [Google Scholar]
  155. Gallas, M.; Calegaro-Marques, C.; Bencke-Amato, S. Supplemental observations on the morphology of Procamallanus (Spirocamallanus) hilarii (Nematoda: Camallanidae) parasitizing two species of Astyanax (Characiformes: Characidae) and ecological analyses. Rev. Mex. Biodivers. 2015, 86, 590–596. [Google Scholar] [CrossRef]
  156. Pinto, R.M.; Noronha, D. Procamallanus brasileiros (Nematoda, Camallanoidea): Considerações finais, com chave para determinação das espécies. Mem. Inst. Oswaldo Cruz 1976, 74, 323–339. [Google Scholar] [CrossRef]
  157. Moravec, F.; Vargas-Vazquez, J. The development of Procamallanus (Spirocamallanus) neocaballeroi (Nematoda: Camallanidae), a parasite of Astyanax fasciatus (Pisces) in Mexico. Folia Parasitol. 1996, 43, 61–70. [Google Scholar]
  158. Lemos de Castro, A. Contribuição ao conhecimento dos crustáceos argulídeos do Brasil (Branchiura: Argulidae), com descrição de uma nova espécie. Bol. Mus. Nac. 1949, 93, 1–8. [Google Scholar]
  159. Pádua, S.B.D.; Jerônimo, G.T.; Menezes-Filho, R.N.D.; Taboga, S.R.; Martins, M.L.; De Andrade Belo, M.A. Pathological assessment of farmed yellowtail tetra Astyanax altiparanae infested by Acusicola sp. (Ergasilidae). Aquac. Rep. 2015, 2, 63–66. [Google Scholar] [CrossRef]
  160. Narciso, R.B.; Brandão, H.; Perbiche-Neves, G.; Da Silva, R.J. A new genus of Ergasilidae (Copepoda: Cyclopoida) from the gills of Astyanax fasciatus (Cuvier, 1819) (Actinopterygii: Characidae). Acta Parasitol. 2019, 64, 850–865. [Google Scholar] [CrossRef]
  161. Gallio, M.; Schafer, S.A.; Gonzalez, M.S. Parasitismo por Lernaea cyprinacea em Astyanax bimaculatus provenientes de um açude no município de Antonio Prado, Rio Grande do Sul. Acta Sci. Vet. 2007, 35, 2. [Google Scholar] [CrossRef]
  162. Thatcher, V.E.; Huergo, G.M. Minilernaea floricapitella gen. nov., sp. nov. (Copepoda, Lernaeidae) from freshwater fishes of Southern Brazil. Rev. Bras. Zool. 2005, 22, 821–824. [Google Scholar] [CrossRef]
  163. Lemos de Castro, A. Paracymothoa astyanactis g. n. esp. n. Isopode parasita de peixe de água doce (Isopoda, Cymothoidae). Rev. Bras. Biol. 1955, 15, 411–414. [Google Scholar]
Figure 1. Spatial representation of the non-metric multidimensional scaling ordination (NMDS) showing the similarity of the parasite infracommunities of A. bimaculatus (AB) and P. fasciatus (PF) from the Batateiras River in Brazilian Caatinga domain. The black dots represent each infracommunity.
Figure 1. Spatial representation of the non-metric multidimensional scaling ordination (NMDS) showing the similarity of the parasite infracommunities of A. bimaculatus (AB) and P. fasciatus (PF) from the Batateiras River in Brazilian Caatinga domain. The black dots represent each infracommunity.
Parasitologia 05 00008 g001
Figure 2. Geographical location of the Batateiras River in the state of Ceará, Northeast Brazil.
Figure 2. Geographical location of the Batateiras River in the state of Ceará, Northeast Brazil.
Parasitologia 05 00008 g002
Table 1. Fish parasites of A. bimaculatus from the Batateiras River, municipality of Crato, Ceará state, Brazil. Site of infestation/infection (SI), number of hosts parasitized (HP), prevalence (P), mean intensity (MI), mean abundance (MA), confidence interval (CI), and Poulin’s discrepancy index (D).
Table 1. Fish parasites of A. bimaculatus from the Batateiras River, municipality of Crato, Ceará state, Brazil. Site of infestation/infection (SI), number of hosts parasitized (HP), prevalence (P), mean intensity (MI), mean abundance (MA), confidence interval (CI), and Poulin’s discrepancy index (D).
ParasiteSIHPP% (CI)MI (CI)MA (CI)D
Myxozoa
Henneguya sp.Gills20.8 (0.01–3.0)9.5 (4.0–9.5)0.08 (0–0.34)0.99
Monogenea
Anachantocotyle anachantocotyle * Gills218.7 (6.0–13.0)2.1 (1.5–3.1)0.18 (0.10–0.32)0.94
Characithecium costaricenseGills7531.0 (25.0–37.0)3.01 (2.37–3.97)0.93 (0.69–1.28)0.84
Characithecium sp. 1 *Gills6326.0 (21.0–32.0)4.52 (3.56–5.83)1.18 (0.82–1.64)0.86
Characithecium sp. 2 *Gills208.3 (5.0–12.0)1.35 (1.1–1.5)0.11 (0.06–0.16)0.93
Diaphorocleidus sp. 1Gills6727.7 (22.0–34.0)4.49 (3.54–6.0)1.24 (0.88–1.74)0.85
Diaphorocleidus sp. 2Gills218.7 (5.0–13.0)6.81 (4.57–9.57)0.59 (0.31–1.03)0.95
Urocleidoides trinidadensisGills6828.1 (22.0–34.0)2.29 (1.88–2.83)0.64 (0.47–0.85)0.83
Digenea
Ascocotyle sp.Gills62.5 (0.9–5.3)2.0 (1.17–2.83)0.05 (0.02–0.11)0.98
Diplostomidae gen. sp.Eyes20.8 (0.1–3.0)3.0 (2.0–3.0)0.02 (0–0.08)0.99
Wallinia caririensisIntestine4920.2 (15.4–25.9)9.69 (7.01–13.7)1.96 (1.36–3.05)0.91
Nematoda
Procamallanus (Spirocamallanus) hilariiIntestine2912.0 (8.2–16.8)1.69 (1.38–2.14)0.2 (0.13–0.32)0.91
Spiroxys sp.Mesentery31.2 (0.3–3.6)1.33 (1.0–1.67)0.02 (0–0.04)0.99
* New record of parasite–host association.
Table 2. Fish parasites of P. fasciatus from the Batateiras River, municipality of Crato, Ceará state, Brazil. Site of infestation/infection (SI), number of hosts parasitized (HP), prevalence (P), mean intensity (MI), mean abundance (MA), confidence interval (CI), and Poulin’s discrepancy index (D).
Table 2. Fish parasites of P. fasciatus from the Batateiras River, municipality of Crato, Ceará state, Brazil. Site of infestation/infection (SI), number of hosts parasitized (HP), prevalence (P), mean intensity (MI), mean abundance (MA), confidence interval (CI), and Poulin’s discrepancy index (D).
ParasiteSIHPP% (CI)MI (CI)MA (CI)D
Monogenea
Characithecium costaricenseGills48.0 (2.2–19.2)1.5 (1.0–1.75)0.12 (0.02–0.28)0.91
Dactylogyridae gen. sp.Gills12.0 (0.1–10.6)2.00.04 (0–0.12)0.96
Diaphorocleidus sp. 2 *Gills12.0 (0.1–10.6)2.00.04 (0–0.12)0.96
Diaphorocleidus kabataiGills1428.0 (16.2–42.5)10.4 (6.27–17.3)2.92 (1.53–5.83)0.85
Gyrodactylus sp. 1 *Gills12.0 (0.1–10.6)2.00.04 (0–0.12)0.96
Gyrodactylus sp. 2 *Gills12.0 (0.1–10.6)1.00.02 (0–0.06)0.96
Trinibaculum pinctiarumGills1020.0 (10.0–33.7)3.0 (1.9–4.81)0.6 (0.28–1.28)0.86
Digenea
Diplostomidae gen. sp. *Eyes510.0 (3.3–21.8)1.6 (1.0–2.2)0.16 (0.04–0.34)0.91
Wallinia caririensisIntestine24.0 (4.0–13.7)2.00.08 (0–0.2)0.94
Nematoda
Procamallanus (Spirocamallanus) hilariiIntestine714.0 (5.8–26.7)1.71 (1.0–3.0)0.24 (0.08–0.58)0.89
Spiroxys sp.Mesentery12.0 (0.1–10.6)1.00.02 (0–0.06)0.96
* New record of parasite–host association.
Table 3. Correlation between host characteristics and parasite diversity metrics for A. bimaculatus and P. fasciatus from the Batateiras River, municipality of Crato, Ceará state, Brazil. Spearman correlation coefficients (rs) and associated p-values (p) are shown for each correlation. All the results are significant (p < 0.05).
Table 3. Correlation between host characteristics and parasite diversity metrics for A. bimaculatus and P. fasciatus from the Batateiras River, municipality of Crato, Ceará state, Brazil. Spearman correlation coefficients (rs) and associated p-values (p) are shown for each correlation. All the results are significant (p < 0.05).
Host SpeciesCorrelationrs
A. bimaculatusShannon vs. host length0.42
Richness vs. host length0.44
Abundance vs. host length0.45
Shannon vs. host weight0.40
Richness vs. host weight0.43
Abundance vs. host weight0.45
P. fasciatusShannon vs. host length0.70
Richness vs. host length0.70
Abundance vs. host length0.69
Shannon vs. host weight0.68
Richness vs. host weight0.70
Abundance vs. host weight0.69
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Silva, B.A.F.d.; Falkenberg, J.M.; Yamada, F.H. Diversity of Parasites in Two Sympatric Species of Brazilian Tetras (Characiformes: Acestrorhamphidae) in the Caatinga Domain, Northeastern Brazil. Parasitologia 2025, 5, 8. https://doi.org/10.3390/parasitologia5010008

AMA Style

Silva BAFd, Falkenberg JM, Yamada FH. Diversity of Parasites in Two Sympatric Species of Brazilian Tetras (Characiformes: Acestrorhamphidae) in the Caatinga Domain, Northeastern Brazil. Parasitologia. 2025; 5(1):8. https://doi.org/10.3390/parasitologia5010008

Chicago/Turabian Style

Silva, Bruno Anderson Fernandes da, Julia Martini Falkenberg, and Fábio Hideki Yamada. 2025. "Diversity of Parasites in Two Sympatric Species of Brazilian Tetras (Characiformes: Acestrorhamphidae) in the Caatinga Domain, Northeastern Brazil" Parasitologia 5, no. 1: 8. https://doi.org/10.3390/parasitologia5010008

APA Style

Silva, B. A. F. d., Falkenberg, J. M., & Yamada, F. H. (2025). Diversity of Parasites in Two Sympatric Species of Brazilian Tetras (Characiformes: Acestrorhamphidae) in the Caatinga Domain, Northeastern Brazil. Parasitologia, 5(1), 8. https://doi.org/10.3390/parasitologia5010008

Article Metrics

Back to TopTop