New Machine Learning Approach for the Optimization of Nano-Hybrid Formulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of the Nanocarriers
2.2.2. Characterization of the Nanocarriers
Physical Behavior of Systems
Phase Behavior Experimental Design using Machine Learning
β-Lap Solubility in Nanosystems: Factorial and Machine Learning Analyses
Design of Experiments by Central Composite Design
Design of Experiments by Machine Learning (MLP and SVM)
3. Results and discussion
3.1. Physical Behavior Analysis
3.2. β-Lap Solubility Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PEO | poly (ethylene oxide) |
PPO | poly (propylene oxide) |
T1304 | poloxamine with 21 and 27 PEO and PPO units respectively |
LAP | Laponite |
RMS | response surface methodology |
ML | machine learning |
MLP | multilayer perceptron |
SVM | support vector machine |
β-Lap | β-Lapachone |
HBL | hydrophilic-lipophilic balance |
SP1049C | doxorubicin |
AI | artificial intelligence |
ANN | artificial neural networks |
SMO | sequential minimal optimization |
CCD | central composite design |
TPR | true positive rate |
FNR | false negative rate |
MSE | mean square error |
kNN | k-nearest neighbors algorithm |
References
- Úriz, A.; Sanmartín, C.; Plano, D.; Dreiss, C.A.; González-Gaitano, G. Activity Enhancement of Selective Antitumoral Selenodiazoles Formulated with Poloxamine Micelles. Colloids Surf. B Biointerfaces 2018, 170, 463–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiyama, N.; Kataoka, K. Current State, Achievements, and Future Prospects of Polymeric Micelles as Nanocarriers for Drug and Gene Delivery. Pharmacol. Ther. 2006, 112, 630–648. [Google Scholar] [CrossRef] [PubMed]
- Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.W.; Hennink, W.E. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release. Pharm. Res. 2010, 27, 2569–2589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Y.C.; Chang, S.F.; Kao, W.W.Y.; Liu, C.Y.; Liaw, J. Polymeric Micelle Gene Delivery of Bcl-XLvia Eye Drop Reduced Corneal Apoptosis following Epithelial Debridement. J. Control. Release 2010, 147, 76–83. [Google Scholar] [CrossRef]
- Yokoyama, M. Clinical Applications of Polymeric Micelle Carrier Systems in Chemotherapy and Image Diagnosis of Solid Tumors. J. Exp. Clin. Med. 2011, 3, 151–158. [Google Scholar] [CrossRef]
- Gong, J.; Chen, M.; Zheng, Y.; Wang, S.; Wang, Y. Polymeric Micelles Drug Delivery System in Oncology. J. Control. Release 2012, 159, 312–323. [Google Scholar] [CrossRef]
- Zheng, C.; Zheng, M.; Gong, P.; Deng, J.; Yi, H.; Zhang, P.; Zhang, Y.; Liu, P.; Ma, Y.; Cai, L. Polypeptide Cationic Micelles Mediated Co-Delivery of Docetaxel and SiRNA for Synergistic Tumor Therapy. Biomaterials 2013, 34, 3431–3438. [Google Scholar] [CrossRef]
- Duncan, R.; Vicent, M.J. Polymer Therapeutics-Prospects for 21st Century: The End of the Beginning. Adv. Drug Deliv. Rev. 2013, 65, 60–70. [Google Scholar] [CrossRef]
- Moghimi, S.M. Nanomedicine: Current Status and Future Prospects. FASEB J. 2005, 19, 311–330. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Lorenzo, C.; Rey-Rico, A.; Sosnik, A.; Taboada, P.; Concheiro, A. Poloxamine-Based Nanomaterials for Drug Delivery. Front. Biosci. 2010, 3, 424–440. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Lorenzo, C.; Sosnik, A.; Concheiro, A. PEO-PPO Block Copolymers for Passive Micellar Targeting and Overcoming Multidrug Resistance in Cancer Therapy. Curr. Drug Targets 2011, 12, 1112–1130. [Google Scholar] [CrossRef]
- Schmolka, I.R. A Review of Block Polymer Surfactants. J. Am. Oil Chem. Soc. 1977, 54, 110–116. [Google Scholar] [CrossRef]
- Alexandridis, P. Poly (Ethylene Oxide)/Poly (Propylene Oxide) Block Copolymer. Curr. Opin. Colloid Interface Sci. 1997, 2, 478–489. [Google Scholar] [CrossRef]
- Inamdar, N.N.; Mourya, V. Applications of Polymers in Devivery of Biologics. In Applications of Polymers in Drug Delivery; Misra, A., Shahiwala, A., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 449–534. [Google Scholar] [CrossRef]
- Chiappetta, D.A.; Sosnik, A. Poly(Ethylene Oxide)-Poly(Propylene Oxide) Block Copolymer Micelles as Drug Delivery Agents: Improved Hydrosolubility, Stability and Bioavailability of Drugs. Eur. J. Pharm. Biopharm. 2007, 66, 303–317. [Google Scholar] [CrossRef]
- Kuperkar, K.; Tiwari, S.; Bahadur, P. Self-Assembled Block Copolymer Nanoaggregates for Drug Delivery Applications. In Applications of Polymers in Drug Delivery; Misra, A., Shahiwala, A., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 423–447. [Google Scholar] [CrossRef]
- Tiwari, S.; Kansara, V.; Bahadur, P. Targeting Anticancer Drugs with Pluronic Aggregates: Recent Updates. Int. J. Pharm. 2020, 586, 119544. [Google Scholar] [CrossRef]
- Rahdar, A.; Askari, F. Pluronic as Nano-Carier Platform for Drug Delivery Systems. Nanomed. Res. J. 2018, 3, 174–179. [Google Scholar] [CrossRef]
- Pillai, S.A.; Sharma, A.K.; Desai, S.M.; Sheth, U.; Bahadur, A.; Ray, D.; Aswal, V.K.; Kumar, S. Characterization and Application of Mixed Micellar Assemblies of PEO-PPO Star Block Copolymers for Solubilization of Hydrophobic Anticancer Drug and in Vitro Release. J. Mol. Liq. 2020, 313, 113543. [Google Scholar] [CrossRef]
- Wolf, A.; Agnihotri, S.; Micallef, J.; Mukherjee, J.; Sabha, N.; Cairns, R.; Hawkins, C.; Guha, A. Hexokinase 2 Is a Key Mediator of Aerobic Glycolysis and Promotes Tumor Growth in Human Glioblastoma Multiforme. J. Exp. Med. 2011, 208, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Cuestas, M.L.; Sosnik, A.; Mathet, V.L. Poloxamines Display a Multiple Inhibitory Activity of ATP-Binding Cassette (ABC) Transporters in Cancer Cell Lines. Mol. Pharm. 2011, 8, 1152–1164. [Google Scholar] [CrossRef]
- Cavalloro, G.; Fakhrullin, R.; Pasbakhsh, P. Clay Nanoparticles: Properties and Applications, 1st ed.; Cavalloro, G., Fakhrullin, R., Pasbakhsh, P., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Tomás, H.; Alves, C.S.; Rodrigues, J. Laponite®: A Key Nanoplatform for Biomedical Applications? Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2407–2420. [Google Scholar] [CrossRef]
- Ruzicka, B.; Zaccarelli, E. A Fresh Look at the Laponite Phase Diagram. Soft Matter 2011, 7, 1268–1286. [Google Scholar] [CrossRef]
- Faustini, M.; Nicole, L.; Ruiz-Hitzky, E.; Sanchez, C. History of Organic-Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Adv. Funct. Mater. 2018, 28, 1704158. [Google Scholar] [CrossRef]
- Gaharwar, A.K.; Schexnailder, P.J.; Kline, B.P.; Schmidt, G. Assessment of Using Laponite? Cross-Linked Poly (Ethylene Oxide) for Controlled Cell Adhesion and Mineralization. Acta Biomater. 2011, 7, 568–577. [Google Scholar] [CrossRef]
- Gonçalves, M.; Figueira, P.; Maciel, D.; Rodrigues, J.; Qu, X.; Liu, C.; Tomás, H.; Li, Y. PH-Sensitive Laponite®/Doxorubicin/Alginate Nanohybrids with Improved Anticancer Efficacy. Acta Biomater. 2014, 10, 300–307. [Google Scholar] [CrossRef]
- Pelegrino, M.T.; de Araújo, D.R.; Seabra, A.B. S-Nitrosoglutathione-Containing Chitosan Nanoparticles Dispersed in Pluronic F-127 Hydrogel: Potential Uses in Topical Applications. J. Drug Deliv. Sci. Technol. 2018, 43, 211–220. [Google Scholar] [CrossRef]
- Dos Santos, A.C.M.; Akkari, A.C.S.; Ferreira, I.R.S.; Maruyama, C.R.; Pascoli, M.; Guilherme, V.A.; de Paula, E.; Fraceto, L.F.; de Lima, R.; da Melo, P.S.; et al. Poloxamer-Based Binary Hydrogels for Delivering Tramadol Hydrochloride: Sol-Gel Transition Studies, Dissolution-Release Kinetics, in Vitro Toxicity, and Pharmacological Evaluation. Int. J. Nanomed. 2015, 10, 2391–2401. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, R.d.M.; Câmara, G.B.M.; García-Villén, F.; Viseras, C.; de Júnior, R.F.A.; Machado, P.R.L.; Câmara, C.A.; Farias, K.J.S.; de Moura, T.F.A.L.E.; Dreiss, C.A.; et al. Nanocomposite Gels of Poloxamine and Laponite for β -Lapachone Release in Anticancer Therapy. Eur. J. Pharm. Sci. 2021, 163, 105861. [Google Scholar] [CrossRef]
- Silva, M.N.D.; Ferreira, V.F.; de Souza, M.C.B.V. Um Panorama Atual da Química e da Farmacologia de Naftoquinonas, Com Ênfase na Beta-Lapachona e Derivados. Quim. Nova 2003, 26, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Andrade-neto, V.F.D.; Goulart, O.F.; Silva, F.; Silva, J. Antimalarial Activity of Phenazines from Lapachol, β-Lapachone and Its Derivatives against Plasmodium falciparum in Vitro and Plasmodium berghei in Vivo. Bioorg. Med. Chem. Lett. 2004, 14, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, K.M.; de Melo Barbosa, R.; Vargas, F.G.A.; de Azevedo, E.P.; da Silva Lins, A.C.; Camara, C.A.; Aragão, C.F.S.; de Lima e Moura, T.F.; Raffin, F.N. Development of Solid Dispersions of β-Lapachone in PEG and PVP by Solvent Evaporation Method. Drug Dev. Ind. Pharm. 2018, 44, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Kim, H.; Ro, J.; Jo, K.; Karki, S.; Khadka, P.; Yun, G.; Lee, J. Preclinical Pharmacokinetic Evaluation of β-Lapachone: Characteristics of Oral Bioavailability and First-Pass Metabolism in Rats. Biomol. Ther. 2015, 23, 296–300. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.P.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. 1951, 13, 1–45. [Google Scholar] [CrossRef]
- Singh, B.; Chakkal, S.K.; Ahuja, N. Formulation and Optimization of Controlled Release Mucoadhesive Tablets of Atenolol Using Response Surface Methodology. AAPS PharmaSciTech 2006, 7, E19–E28. [Google Scholar] [CrossRef]
- Narayanan, H.; Dingfelder, F.; Butté, A.; Lorenzen, N.; Sokolov, M.; Arosio, P. Machine Learning for Biologics: Opportunities for Protein Engineering, Developability, and Formulation. Trends Pharmacol. Sci. 2021, 42, 151–165. [Google Scholar] [CrossRef]
- McCoubrey, L.E.; Gaisford, S.; Orlu, M.; Basit, A.W. Predicting Drug-Microbiome Interactions with Machine Learning. Biotechnol. Adv. 2022, 54, 107797. [Google Scholar] [CrossRef]
- De Souza, J.G.; Fernandes, M.A.C. A Novel Deep Neural Network Technique for Drug—Target Interaction. Pharmaceutics 2022, 14, 625. [Google Scholar] [CrossRef]
- Bannigan, P.; Aldeghi, M.; Bao, Z.; Häse, F.; Aspuru-Guzik, A.; Allen, C. Machine Learning Directed Drug Formulation Development. Adv. Drug Deliv. Rev. 2021, 175, 113806. [Google Scholar] [CrossRef]
- Hathout, R.M. Machine Learning Methods in Drug Delivery. In Applications of Artificial Intelligence in Process Systems Engineering; Ren, J., Shen, W., Man, Y., Dong, L., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 361–380. [Google Scholar] [CrossRef]
- Boulogeorgos, A.A.A.; Member, S.; Trevlakis, S.E.; Member, S.; Tegos, S.A.; Member, S.; Papanikolaou, V.K.; Member, S. Machine Learning in Nano-Scale Biomedical Engineering. IEEE Trans. Mol. Biol. MULTI-SCALE Commun. 2020, 7, 10–39. [Google Scholar] [CrossRef]
- Shastry, K.; Sanjay, H. Machine Learning for Bioinformatics. In Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques; Srinivasa, K.G., Siddesh, G.M., Manisekhar, S.R., Eds.; Springer: Singapore, 2020; pp. 25–39. [Google Scholar]
- Naresh, E.; Kumar, B.; Shankar, S. Impact of Machine Learning in Bioinformatics Research. In Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques; Srinivasa, K.G., Siddesh, G.M., Manisekhar, S.R., Eds.; Springer: Singapore, 2020; pp. 41–62. [Google Scholar]
- Mouchlis, V.D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A.G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in De Novo Drug Design: From Conventional to Machine Learning Methods. Int. J. Mol. Sci. 2021, 22, 1676. [Google Scholar] [CrossRef]
- Boso, D.P.; Di Mascolo, D.; Santagiuliana, R.; Decuzzi, P.; Schrefler, B.A.; Morego, V. Drug Delivery: Experiments, Mathematical Modelling and Machine Learning. Comput. Biol. Med. 2021, 123, 103820. [Google Scholar] [CrossRef]
- Pereira, A.K.V.; de Melo Barbosa, M.; Fernandes, M.A.C.; Finkler, L.; Finkler, C.L.L. Comparative Analyses of Response Surface Methodology and Artificial Neural Networks on Incorporating Tetracaine into Liposomes. Braz. J. Pharm. Sci. 2020, 56, e17808. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, Y.; Chen, Y.; Shukla, A.J. Application of Artificial Neural Networks in the Design of Controlled Release Drug Delivery Systems. Adv. Drug Deliv. Rev. 2003, 55, 1201–1215. [Google Scholar] [CrossRef]
- Ekins, S.; Puhl, A.C.; Zorn, K.M.; Lane, T.R.; Russo, D.P.; Klein, J.J.; Hickey, A.J.; Clark, A.M. Exploiting Machine Learning for End-to-End Drug Discovery and Development. Nat. Mater. 2019, 18, 435–441. [Google Scholar] [CrossRef]
- Bartolucci, R.; Magni, P. Application of Artificial Neural Networks to Predict the Intrinsic Solubility of Drug-Like Molecules. Pharmaceutics 2021, 13, 1101. [Google Scholar] [CrossRef]
- Medarevi, D. Tailoring Atomoxetine Release Rate from DLP 3D-Printed Tablets Using Artificial Neural Networks: Influence of Tablet. Molecules 2021, 26, 111. [Google Scholar] [CrossRef]
Physical Behavior | Parameters Used |
---|---|
Liquid | Clear liquid and unable to maintain its weight if the bottle is inverted. |
Viscous liquid | Thicker liquid with slower sample flow. Additionally, unable to maintain its weight if the bottle is inverted. |
Gel | Classified as transparent dispersions in the form of a gel and capable of maintaining their weight if the vial is inverted; however, if subjected to vigorous agitation for 10 s, they come off. |
Strong gel | Classified as clear dispersions in the form of a firm gel, capable of maintaining their weight against gravity in an inverted flask, and if subjected to vigorous shaking for 10 s, they do not come off. |
Assays | |||||
---|---|---|---|---|---|
Coded Level | % (w/w) | Coded Level | % (w/w) | ||
1 | −1 | 1 | −1 | 0.0 | 0.1206 |
2 | −1 | 1 | 0 | 1.5 | 0.2600 |
3 | −1 | 1 | +1 | 3.0 | 0.4264 |
4 | 0 | 10 | −1 | 0.0 | 0.4281 |
5 | 0 | 10 | +1 | 3.0 | 0.5103 |
6 | +1 | 20 | −1 | 0.0 | 1.0211 |
7 | +1 | 20 | 0 | 1.5 | 1.6062 |
8 | +1 | 20 | +1 | 3.0 | 0.9988 |
9 | 0 | 10 | 0 | 1.5 | 0.7875 |
10 | 0 | 10 | 0 | 1.5 | 0.8010 |
11 | 0 | 10 | 0 | 1.5 | 0.7780 |
12 | 0 | 10 | 0 | 1.5 | 0.7650 |
Assays | |||
---|---|---|---|
Coded Level | % (w/w) | Coded Level | |
13 | 5 | 0.0 | 0.2092 |
14 | 5 | 1.5 | 0.4792 |
15 | 5 | 3.0 | 0.3617 |
16 | 15 | 0.0 | 0.3639 |
17 | 15 | 1.5 | 1.1375 |
18 | 15 | 3.0 | 0.8039 |
19 | 8 | 0.0 | 0.4618 |
20 | 20 | 1.0 | 0.1397 |
21 | 20 | 2.0 | 1.2785 |
Parameters | Values | Parameters | Values |
---|---|---|---|
−0.0005 | 0.0015 | ||
0.0262 | −0.1345 | ||
0.5031 | −0.0057 |
Kernel Centers (or Support Vectors) | SVM Gains (See Figure 1b) |
---|---|
Surface Method | MSE | R2 | ||
---|---|---|---|---|
RSM | Fitting | Val. | Fitting | Val. |
0.0105 | 0.0109 | 0.9279 | 0.9368 | |
Training | Val. | Training | Val. | |
MLP | 0.0106 | 0.0098 | 0.9332 | 0.9433 |
SVM | 0.0030 | 0.0045 | 0.9814 | 0.9737 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, R.d.M.; Lima, C.C.; Oliveira, F.F.d.; Câmara, G.B.M.; Viseras, C.; Moura, T.F.A.d.L.e.; Souto, E.B.; Severino, P.; Raffin, F.N.; Fernandes, M.A.C. New Machine Learning Approach for the Optimization of Nano-Hybrid Formulations. Nanomanufacturing 2022, 2, 82-97. https://doi.org/10.3390/nanomanufacturing2030007
Barbosa RdM, Lima CC, Oliveira FFd, Câmara GBM, Viseras C, Moura TFAdLe, Souto EB, Severino P, Raffin FN, Fernandes MAC. New Machine Learning Approach for the Optimization of Nano-Hybrid Formulations. Nanomanufacturing. 2022; 2(3):82-97. https://doi.org/10.3390/nanomanufacturing2030007
Chicago/Turabian StyleBarbosa, Raquel de M., Cleanne C. Lima, Fabio F. de Oliveira, Gabriel B. M. Câmara, César Viseras, Tulio F. A. de Lima e Moura, Eliana B. Souto, Patricia Severino, Fernanda N. Raffin, and Marcelo A. C. Fernandes. 2022. "New Machine Learning Approach for the Optimization of Nano-Hybrid Formulations" Nanomanufacturing 2, no. 3: 82-97. https://doi.org/10.3390/nanomanufacturing2030007
APA StyleBarbosa, R. d. M., Lima, C. C., Oliveira, F. F. d., Câmara, G. B. M., Viseras, C., Moura, T. F. A. d. L. e., Souto, E. B., Severino, P., Raffin, F. N., & Fernandes, M. A. C. (2022). New Machine Learning Approach for the Optimization of Nano-Hybrid Formulations. Nanomanufacturing, 2(3), 82-97. https://doi.org/10.3390/nanomanufacturing2030007