Safe Explosion Works Promoted by 2D Graphene Structures Produced under the Condition of Self-Propagation High-Temperature Synthesis
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials
Precursor
2.2. Synthesis of Few-Layer Graphene (FLG)
2.3. Methods Used for Studying the Resulting Carbonized Structures
2.3.1. XRD Diffraction
2.3.2. Raman Spectroscopy
2.3.3. SEM and TEM
2.3.4. Specific Surface Area Determination
2.4. Production of Pyrotechnic Compositions
2.4.1. Samples of Charge of the Pyrotechnic Composition (PC) Based on por-Si Powder and Calcium Perchlorate Ca(ClO4)2
2.4.2. Basic Composition Modified with Graphene Particle Preparations
2.4.3. Testing of Pyrotechnic Compositions
3. Results and Their Discussion
3.1. Electron Microscopy
3.1.1. X-ray
3.1.2. Raman Spectroscopy
4. Application of 2D Graphene Structures to Reduce the Ignition Threshold of Pyrotechnic Compositions
5. Model Representations of the Mechanism of Formation of 2D Graphene Structures under the Condition of the SHS Process
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, P.R. Explosives Development and Fundamentals of Explosives Technology. In Explosive Effects and Applications. High-Pressure Shock Compression of Condensed Matter; Zukas, J.A., Walters, W.P., Eds.; Springer: New York, NY, USA, 1998. [Google Scholar] [CrossRef]
- Badgujar, D.; Talawar, M.; Asthana, S.; Mahulikar, P. Advances in science and technology of modern energetic materials: An overview. J. Hazard. Mater. 2008, 151, 289–305. [Google Scholar] [CrossRef]
- Ahmad, S.R.; Cartwright, M. Laser Ignition of Energetic Materials; John Wiley & Sons: Chichester, UK, 2015; ISBN 9780470975985. [Google Scholar]
- Ecotoxicology of Explosives; Sunahara, G.I.; Lotufo, G.; Kuperman, R.G.; Hawari, J. (Eds.) Taylor and Francis Group: London, UK; New York, NY, USA, 2009. [Google Scholar]
- Fu, X.; Zhu, Y.; Li, J.; Jiang, L.; Zhao, X.; Fan, X. Preparation, Characterization and Application of Nano-Graphene-Based Energetic Materials. Nanomaterials 2021, 11, 2374. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, L.-S.; Gong, S.; Guang, C.; Li, L.; Hu, S.; Deng, P. Study of Ammonium Perchlorate-based Molecular Perovskite (H2DABCO)[NH4(ClO4)3]/Graphene Energetic Composite with Insensitive Performance. Cent. Eur. J. Energetic Mater. 2020, 17, 451–469. [Google Scholar] [CrossRef]
- Cai, W.; Zeng, B.; Liu, J.; Guo, J.; Li, N.; Chen, L.; Chen, H. Improved field emission property of graphene by laser irradiation. Appl. Surf. Sci. 2013, 284, 113–117. [Google Scholar] [CrossRef]
- Zhang, X.; Hikal, W.M.; Zhang, Y.; Bhattacharia, S.K.; Li, L.; Panditrao, S.; Wang, S.; Weeks, B.L. Direct laser initiation and improved thermal stability of nitrocellulose/graphene oxide nanocomposites. Appl. Phys. Lett. 2013, 102, 141905. [Google Scholar] [CrossRef]
- Adel, M.; El-Maghraby, A.; El-Shazly, O.; El-Wahidy, E.-W.F.; Mohamed, M.A.A. Synthesis of few-layer graphene-like nanosheets from glucose: New facile approach for graphene-like nanosheets large-scale production. J. Mater. Res. 2016, 31, 455–467. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Li, R.; Yang, Q.; Zhang, H.; Yang, B.; Yang, G. Laser ignited combustion of graphene oxide/nitrocellulose membranes for solid propellant micro thruster and solar water distillation. Carbon 2020, 166, 138–147. [Google Scholar] [CrossRef]
- Voznyakovskii, A.; Neverovskaya, A.; Otvalko, J.; Gorelova, E.; Zabelina, A. Facile synthesis of 2D carbon structures as a filler for polymer composites. Nanosyst. Phys. Chem. Math. 2018, 9, 125–128. [Google Scholar] [CrossRef]
- Sytschev, A.E.; Merzhanov, A.G. Self-propagating high-temperature synthesis of nanomaterials. Russ. Chem. Rev. 2004, 73, 147–159. [Google Scholar] [CrossRef]
- Rogachev, A.S.; Mukasin, A.S. Combustion for the Synthesis of Materials: An Introduction to Structural Macrokinetics; physmatlit: Moscow, Russia, 2012. [Google Scholar]
- Merzhanov, A. Self-Propagating High-Temperature Synthesis: Non-Equilibrium Processes and Equilibrium Products. Adv. Sci. Technol. 2006, 45, 36–44. [Google Scholar]
- Merzhanov, A.G.; Borovinskaya, I.P. Historical retrospective of SHS: An autoreview. Int. J. Self Propagating High Temp. Synth. 2008, 17, 242–265. [Google Scholar] [CrossRef]
- Mahmoudi, T.; Wang, Y.; Hahn, Y.-B. Graphene and its derivatives for solar cells application. Nano Energy 2018, 47, 51–65. [Google Scholar] [CrossRef]
- Ralph, J.; Lapierre, C.; Boerjan, W. Lignin structure and its engineering. Curr. Opin. Biotechnol. 2019, 56, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Hardt, A.P. Pyrotechnics. In Post Falls; Pyrotechnica Publications: Post Falls, ID, USA, 2001. [Google Scholar]
- Zegrya, G.G.; Savenkov, G.G.; Zegrya, A.G.; Bragin, V.A.; Os’kin, I.A.; Poberezhnaya, U.M. Laser Initiation of Energy-Saturated Composites Based on Nanoporous Silicon. Technol. Phys. 2020, 65, 1636–1642. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, K.; Wei, T.; Yan, J.; Song, L.; Shao, B. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 2010, 48, 1686–1689. [Google Scholar] [CrossRef]
- Cheng, I.F.; Xie, Y.; Gonzales, R.A.; Brejna, P.R.; Sundararajan, J.P.; Kengne, B.F.; Aston, D.E.; McIlroy, D.N.; Foutch, J.D.; Griffiths, P.R. Synthesis of graphene paper from pyrolyzed asphalt. Carbon 2011, 49, 2852–2861. [Google Scholar] [CrossRef]
- Panahi-Kalamuei, M.; Amiri, O.; Salavati-Niasari, M. Green hydrothermal synthesis of high quality single and few layers graphene sheets by bread waste as precursor. J. Mater. Res. Technol. 2020, 9, 2679–2690. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Wu, S.; Xu, B.; Xu, H. Multilayer Polypyrrole Nanosheets with Self-Organized Surface Structures for Flexible and Efficient Solar–Thermal Energy Conversion. Adv. Mater. 2019, 31, e1807716. [Google Scholar] [CrossRef]
- Katsnelson, M.I. Graphene: Carbon in Two Dimensions, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Ilki, B.; Petrovska, S.; Sergiienko, R.; Tomai, T.; Shibata, E.; Nakamura, T.; Honma, I.; Zaulychnyy, Y. X-Ray Emission Spectra of Graphene Nanosheets. J. Nanosci. Nanotechnol. 2012, 12, 8913–8919. [Google Scholar] [CrossRef]
- Tuz Johra, F.; Lee, J.-W.; Jung, W.-G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Bezuidenhout, H.C.; Mukhopadhyay, S. Nanoporous Silicon Based Energetic Formulations for Use in Explosives Initiating System. Int. J. Appl. Eng. Res. 2016, 11, 10465–10471. [Google Scholar]
- Zegrya, G.G.; Savenkov, G.G.; Morozov, V.A.; Ulin, N.V.; Ulin, V.P.; Lukin, A.A.; Bragin, V.A.; Oskin, I.A.; Mikhailov, Y.M. Sensitivity of energy-packed compounds based on superfine and nanoporous silicon to pulsed electrical treatments. Semiconductors 2017, 51, 477–482. [Google Scholar] [CrossRef]
- Grobler, J.M.; Focke, W.W.; Tichapondwa, S.M.; Montgomery, Y.C. Pyrotechnic Alternatives to Primary Explosive-Based Initiators. In Nano and Micro-Scale Energetic Materials: Propellants and Explosives; Pang, W., DeLuca, L.T., Eds.; Part VI: Primary and Secondary Explosives. Chapter 17; Wiley-VCH: Weinheim, Germany, 2023; Volume 2, pp. 499–540. [Google Scholar] [CrossRef]
- Ilyushin, M.A.; Voznyakovskii, A.P.; Shugalei, I.V.; Tverjanovich, A.S. Laser initiation of modified complex cobalt (III) perchlorate. Z. Für Anorg. Und Allg. Chem. 2021, 647, 1254–1260. [Google Scholar] [CrossRef]
- Yan, Q.-L.; Gozin, M.; Zhao, F.-Q.; Cohen, A.; Pang, S.-P. Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale 2016, 8, 4799–4851. [Google Scholar] [CrossRef]
- Poberezhnaya, U.M.; Freiman, V.M.; Ilyushin, M.A.; Zegrya, G.G.; Fadeev, D.V.; Os’kin, I.A.; Morozov, V.A.; Grigor’ev, A.Y.; Savenkov, G.G. Optical and electron-beam initiation of porous silicon films with different contents of oxidizer and graphene. Tech. Phys. 2022, 67, 1469–1474. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Huang, X.; Zhi, C.; Lin, Y.; Bao, H.; Wu, G.; Jiang, P.; Mai, Y.-W. Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R Rep. 2020, 142, 100577. [Google Scholar] [CrossRef]
- Mbambo, M.C.; Khamlich, S.; Khamliche, T.; Moodley, M.K.; Kaviyarasu, K.; Madiba, I.G.; Madito, M.J.; Khenfouch, M.; Kennedy, J.; Henini, M.; et al. Remarkable thermal conductivity enhancement in Ag—Decorated graphene nanocomposites based nanofluid by laser liquid solid interaction in ethylene glycol. Sci. Rep. 2020, 10, 10982. [Google Scholar] [CrossRef]
- Mbambo, M.C.; Madito, M.J.; Khamliche, T.; Mtshali, C.B.; Khumalo, Z.M.; Madiba, I.G.; Mothudi, B.M.; Maaza, M. Thermal conductivity enhancement in gold decorated graphene nanosheets in ethylene glycol based nanofluid. Sci. Rep. 2020, 10, 14730. [Google Scholar] [CrossRef]
- Volkov, K.V.; Danilenko, V.V.; Elin, V.I. Synthesis of diamond from the carbon in the detonation products of explosives. Combust. Explos. Shock Waves 1990, 26, 366–368. [Google Scholar] [CrossRef]
- Danilenko, V.V. Specific Features of Synthesis of Detonation Nanodiamonds. Combust. Explos. Shock Waves 2005, 41, 577–588. [Google Scholar] [CrossRef]
- Titov, V.M.; Anisichkin, V.F.; Mal’Kov, I.Y. Synthesis of ultradispersed diamond in detonation waves. Combust. Explos. Shock Waves 1989, 25, 372–379. [Google Scholar] [CrossRef]
- Pershin, S.V.; Petrov, E.A.; Tsaplin, D.I. Influence of the molecular structure of explosives on the rate of formation, yield, and properties of ultradisperse diamond. Combust. Explos. Shock Waves 1994, 30, 235–238. [Google Scholar] [CrossRef]
- Semenov, N.N. On Some Problems of Chemical Kinetics and Reactivity; Publishing House of the USSR Academy of Sciences: Moscow, Russia, 1958. (In Russian) [Google Scholar]
- Voznyakovskii, A.P.; Dolmatov, V.Y.; Shumilov, F.A. The influence of detonation synthesis conditions on surface properties of detonation nanodiamonds. J. Superhard Mater. 2014, 36, 165–170. [Google Scholar] [CrossRef]
- Vereshchagin, A.L. Detonation Nanodiamonds; ASTU Publishing House: Barnaul, Russia, 2001. (In Russian) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voznyakovskii, A.P.; Ilyushin, M.A.; Vozniakovskii, A.A.; Shugalei, I.V.; Savenkov, G.G. Safe Explosion Works Promoted by 2D Graphene Structures Produced under the Condition of Self-Propagation High-Temperature Synthesis. Nanomanufacturing 2024, 4, 45-57. https://doi.org/10.3390/nanomanufacturing4010003
Voznyakovskii AP, Ilyushin MA, Vozniakovskii AA, Shugalei IV, Savenkov GG. Safe Explosion Works Promoted by 2D Graphene Structures Produced under the Condition of Self-Propagation High-Temperature Synthesis. Nanomanufacturing. 2024; 4(1):45-57. https://doi.org/10.3390/nanomanufacturing4010003
Chicago/Turabian StyleVoznyakovskii, Alexander Petrovich, Mikhail Alekseevich Ilyushin, Aleksei Alexandrovich Vozniakovskii, Irina Vladimirovna Shugalei, and Georgy Georgievich Savenkov. 2024. "Safe Explosion Works Promoted by 2D Graphene Structures Produced under the Condition of Self-Propagation High-Temperature Synthesis" Nanomanufacturing 4, no. 1: 45-57. https://doi.org/10.3390/nanomanufacturing4010003
APA StyleVoznyakovskii, A. P., Ilyushin, M. A., Vozniakovskii, A. A., Shugalei, I. V., & Savenkov, G. G. (2024). Safe Explosion Works Promoted by 2D Graphene Structures Produced under the Condition of Self-Propagation High-Temperature Synthesis. Nanomanufacturing, 4(1), 45-57. https://doi.org/10.3390/nanomanufacturing4010003