Synthesis and Spectral, Thermal and Antimicrobial Investigation of Mixed Ligand Metal Complexes of N-Salicylidene Aniline and 1,10-Phenanthroline
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Instrumments
2.2. Preparation of N-Salicylidene Aniline (L)
2.3. Synthesis of Metal Complexes
2.4. Antimicrobial Investigation
3. Results and Discussion
3.1. FT-IR Spectra
3.2. Electronic Spectra and Magnetic Moment Measurements
3.3. 1HNMR Spectra
3.4. Thermal Analysis (TG and DTG)
3.5. Antimicrobial Investigation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roat-Malone, R.M. Bioinorganic Chemistry: A short Course; John Wiley and Sons, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Crichton, R.R. Biological Inorganic Chemistry an Introduction; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Prakash, O.; Kumar, R.; Tyagi, P.; Kuhad, R.C. Organoiodine(III) mediated synthesis of 3,9-diaryl- and 3,9-difuryl-bis-1,2,4-triazolo[4,3-a][4,3-c]pyrimidines as antibacterial agents. Eur. J. Med. Chem. 2007, 42, 868–872. [Google Scholar] [CrossRef]
- Zhang, N.; Ayral-Kaloustian, S.; Nguyen, T.; Hernandez, R.; Beyer, C. 2-Cyanoaminopyrimidines as a class of antitumor agents that promote tubulin polymerization. Bioorg. Med. Chem. Lett. 2007, 17, 3003–3005. [Google Scholar] [CrossRef]
- Lanier, M.C.; Feher, M.; Ashweek, N.J.; Loweth, C.J.; Rueter, J.K.; Slee, D.H.; Williams, J.P.; Zhu, Y.F.; Sullivan, S.K.; Brown, M.S. Selection, synthesis, and structure–activity relationship of tetrahydropyrido[4,3-d]pyrimidine-2,4-diones as human GnRH receptor antagonists. Bioorg. Med. Chem. 2007, 15, 5590–5603. [Google Scholar] [CrossRef]
- EL-Shwiniy, W.A.; Ibrahim, A.G.; Sadeek, S.A.; Zordok, W.A. Synthesis, structural elucidation, molecular modeling and antimicrobial studies of 6-(2-hydroxyphenylimine)-2-thioxotetrahydropyrimidin-4 (1H)-one (L) Schiff base metal complexes. Appl. Organomet. Chem. 2021, 35, e6174. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; El-khatib, R.M.; Aljohani, F.S.; Alzahrani, S.O.; Mahran, A.; Khalifa, M.E.; El-Metwaly, N.M. Synthesis and intensive characterization for novel Zn(II), Pd(II), Cr(III) and VO(II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J. Mol. Struct. 2021, 1242, 130693. [Google Scholar] [CrossRef]
- Munshi, A.M.; Bayazeed, A.A.; Abualnaja, M.; Morad, M.; Alzahrani, S.; Alkhatib, F.; Shah, R.; Zaky, R.; El-Metwaly, N.M. Ball-milling synthesis technique for Cu(II)-Schiff base complexes with variable anions; characterization, potentiometric study and in-vitro assay confirmed by in-silico method. Inorg. Chem. Commun. 2021, 127, 108542. [Google Scholar] [CrossRef]
- Rajesh, P.; Gunasekaran, S.; Manikandan, A. Structural, spectral analysis of ambroxol using DFT methods. J. Mol. Struct. 2017, 1144, 379–388. [Google Scholar] [CrossRef]
- Abd El-Hamid, S.M.; Sadeek, S.A.; El-Farargy, A.F.; Abd El-Lattif, N.S. Synthesis, structural characterization and ne-maticidal studies of some new N2O2 Schiff base metal complexes. Bull. Chem. Soc. Ethiop. 2021, 35, 315–335. [Google Scholar] [CrossRef]
- Mahmoud, W.H.; Deghadi, R.G.; Mohamed, G.G. Metal complexes of novel Schiff base derived from iron sandwiched organometallic and 4-nitro-1,2- phenylenediamine: Synthesis, characterization, DFT studies, antimicrobial activities and molecular docking. Appl. Organomet. Chem. 2018, 32, e4289. [Google Scholar] [CrossRef]
- Anacona, J.R.; Ruiz, K.; Loroño, M.; Celis, F. Antibacterial activity of transition metal complexes containing a tridentate NNO phenoxymethylpenicillin- based Schiff base. An anti-MRSA iron (II) complex. Appl. Organomet. Chem. 2019, 33, e47744. [Google Scholar] [CrossRef]
- Golbedaghi, R.; Tabanez, A.M.; Esmaeili, S.; Fausto, R. Biological Applications of Macrocyclic Schiff Base Ligands and Their Metal Complexes: A Survey of the Literature(2005–2019). Appl. Organomet. Chem. 2020, 34, e5884. [Google Scholar] [CrossRef]
- Mahmoud, W.H.; Omar, M.M.; Ahmed, Y.M.; Mohamed, G.G. Transition metal complexes of Schiff base ligand based on 4,6-diacetyl resorcinol. Appl. Organomet. Chem. 2020, 34, e5528. [Google Scholar] [CrossRef]
- Jastrzab, R.; Kaczmarek, M.T.; Nowak, M.; Trojanowska, A.; Zabiszak, M. Complexes of polyamines and their derivatives as living system active compounds. Coord. Chem. Rev. 2017, 351, 32–44. [Google Scholar] [CrossRef]
- Abd El-Hamid, S.M.; Sadeek, S.A.; Abd El-Lattif, N.S. Study of the chemical structure and their nematicidal activity of N2O2 tetradentate Schiff base metal complexes. Appl. Organomet. Chem. 2019, 33, e5010. [Google Scholar] [CrossRef]
- Polarz, S.; Landsmann, S.; Klaiber, A. Hybrid Surfactant Systems with Inorganic Constituents. Angew. Chem. Int. Ed. 2014, 53, 946. [Google Scholar] [CrossRef] [Green Version]
- Hubin, T.J.; Amoyaw, P.N.A.; Roewe, K.D.; Simpson, N.C.; Maples, R.D.; Freeman, T.N.C.; Cain, A.N.; Le, J.G.; Archibald, S.J.; Khan, S.I.; et al. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands. Bioorg. Med. Chem. 2014, 22, 3239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.A.; Asiri, A.M.; Al-Amry, K.; Malik, M.A. Synthesis, Characterization, Electrochemical Studies, and In Vitro Antibacterial Activity of Novel Thiosemicarbazone and Its Cu(II), Ni(II), and Co(II) Complexes. Sci. World J. 2014, 2014, 592375. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.Y.; Zhang, L.X.; Rao, X.Y.; Wu, T.L.; Li, D.H.; Xie, X.Q.; Guo, H.F.; Qin, L. Structures, luminescence, and antibacterial studies of two transition metal complexes involving Schiff bases. J. Coord. Chem. 2013, 66, 3261. [Google Scholar] [CrossRef]
- Kursunlu, A.N.; Guler, E.; Sevgi, F.; Ozkalp, B. Synthesis, spectroscopic characterization and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff bases derived from 5-bromo-salicylaldehyde. J. Mol. Struct. 2013, 1048, 476. [Google Scholar] [CrossRef]
- Keypour, H.; Shayesteh, M.; Rezaeivala, M.; Chalabian, F.; Elerman, Y.; Buyukgungor, O. Synthesis, spectral characterization, structural investigation and antimicrobial studies of mononuclear Cu(II), Ni(II), Co(II), Zn(II) and Cd(II) complexes of a new potentially hexadentate N2O4 Schiff base ligand derived from salicylaldehyde. J. Mol. Struct. 2013, 1032, 62. [Google Scholar] [CrossRef]
- Dhanaraj, C.J.; Johnson, J.; Joseph, J.; Joseyphus, R.S. Quinoxaline-based Schiff base transition metal complexes: Review. J. Coord. Chem. 2013, 66, 1416. [Google Scholar] [CrossRef]
- Ahmad, Z.; Chauhan, N.P.S.; Zarrintaj, P.; Khiabani, A.B.; Saeb, M.R.; Mozafari, M. Experimental procedures for assessing electrical and thermal conductivity of polyaniline. In Fundamentals and Emerging Applications of Polyaniline; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 13; pp. 227–258. [Google Scholar]
- de Souza, A.O.; Galetti, F.C.S.; Silva, C.L.; Bicalho, B.; Parma, M.M.; Fonscca, S.F. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Quim. Nova 2007, 30, 6. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Xing, R.; Liu, S.; Zhong, Z.; Ji, X.; Wang, L. Antifungal Properties of Schiff Bases of Chitosan, N-Substituted Chitosan and Quaternized Chitosan. Carbohydr. Res. 2007, 342, 1329–1332. [Google Scholar] [CrossRef]
- Sadeek, S.A.; Abd El-Hamid, S.M. Synthesis spectroscopic, thermal analysis and in vitro biological properties of some new metal complexes with gemifloxacin and 1,10-phenanthroline. J. Therm. Anal. Calorim. 2016, 124, 547–562. [Google Scholar] [CrossRef]
- Kucková, L.; Jomová, K.; Švorcová, A.; Valko, M.; Segľa, P.; Moncoľ, J.; Kožíšek, J. Synthesis, crystal structure, spectroscopic properties and potential biological activities of salicylate–neocuproine ternary Copper(II) complexes. Molecules 2015, 20, 2115–2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, A.E.; Mohammed, S.F.; Sadeek, S.A.; Zordok, W.A.; El-Attar, M.S. Synthesis, structural elucidation, molecular modeling, and antimicrobial studies of some nanoparticles mixed ligands complexes of cetirizine in presence of 2,2′-bipyridine. Appl. Organomet. Chem. 2022, 35, e6715. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Sadeek, S.A.; Camele, I.; Mohamed, A.A. Biochemical characterization of new gemifloxacin schiff base (GMFX-o-phdn) metal complexes and evaluation of their antimicrobial activity against some phyto- or human pathogens. Int. J. Mol. Sci. 2022, 23, 2110. [Google Scholar] [CrossRef]
- Beecher, D.J.; Wong, A.C. Identification of hemolysin BL-producing Bacillus cereus isolates by a discontinuous hemolytic pattern in blood agar. Appl. Environ. Microbiol. 1994, 60, 1646. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Sakr, S.; Bufo, S.A.; Camele, I. An attempt of biocontrol the tomato-wilt disease caused by Verticillium dahliae using Burkholderia gladioli pv. agaricicola and its bioactive secondary metabolites. Int. J. Plant Biol. 2017, 8, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Sofo, A.; Elshafie, H.S.; Scopa, A.; Mang, S.M.; Camele, I. Impact of airborne zinc pollution on the antimicrobial activity of olive oil and the microbial metabolic profiles of Zn-contaminated soils in an Italian olive orchard. J. Trace Elem. Med. Biol. 2018, 49, 276–284. [Google Scholar] [CrossRef]
- Wayne, P.A. CLSI Document M07-A9; Methods for Dilutionantimicrobial Susceptibility Tests for Bacteria that Growaerobically; Clinical and Laboratory Standard Institute: Wayne, NY, USA, 2012. [Google Scholar]
- Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Abd El-Hamid, S.M.; Sadeek, S.A.; Mohammed, S.F.; Ahmed, F.M.; El-Gedamy, M.S. N2O2-chelate metal complexes with Schiff base ligand:Synthesis, characterisation and contribution as a promising antiviral agent against human cytomegalovirus. Appl. Organomet. Chem. 2023, 37, e6958. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Sadeek, S.A.; Camele, I.; Awad, H.M.; Mohamed, A.A. Biological and Spectroscopic Investigations of New Tenoxicam and 1.10-Phenthroline Metal Complexes. Molecules 2020, 25, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeek, S.A.; Mohamed, A.A. Ligational and biological studies of Fe(III), Co(II), Ni(II), Cu(II), and Zr(IV) complexes with carbamazepine as antiepileptic drug. Appl. Organomet. Chem. 2021, 35, e6178. [Google Scholar]
- EL Amane, M.; Bouhdada, M. Synthesis and Characterization of the mixed ligand Complexes [M (Ac) 2 (caf) 2] M = Ni (II), Co (II), Zn (II), [Cu2 (μ-Ac) 4 (caf) 2], Ac = CH3COO-, caf = caffeine. Int. J. Chemtech. Res. 2014, 6, 1430. [Google Scholar]
- Rentschler, E.; Von Malotki, C. Spin transition in three-dimensional bridged coordination polymers of iron(II)–urea-triazoles. Inorg. Chim. Acta 2008, 361, 3646. [Google Scholar] [CrossRef]
- Dilip, C.S.; Kumar, V.S.; Venison, S.J.; Potheher, I.V.; Subahashini, D.R. Synthesis, structural characterisation, bio-potential efficiency and DNA cleavage applications of nicotinamide metal complexes. J. Mol. Struct. 2013, 1040, 192–205. [Google Scholar] [CrossRef]
- El-Ghamry, M.A.; Saleh, A.A.; Khalil, S.M.E.; Mohammed, A.A. Mono, bi- and trinuclear metal complexes derived from new benzene-1,4-bis(3-pyridin-2-ylurea) ligand. Spectral, magnetic, thermal and 3D molecular modeling studies. Spectrochim. Acta A 2013, 110, 205–216. [Google Scholar] [CrossRef]
- Hassan, W.M.I.; Badawy, M.A.; Mohamed, G.G.; Moustafa, H.; Elramly, S. Synthesis, spectroscopic, thermal and DFT calculations of 2-(3-amino-2-hydrazono-4-oxothiazolidin-5-yl) acetic acid binuclear metal complexes. Spectrochim. Acta A 2013, 111, 169–177. [Google Scholar] [CrossRef]
- Yousef, T.A.; Abu El-Reash, G.M.; El-Gammal, O.A.; Bedier, R.A. Synthesis, characterization, optical band gap, in vitro antimicrobial activity and DNA cleavage studies of some metal complexes of pyridyl thiosemicarbazone. J. Mol. Struct. 2013, 1035, 307–317. [Google Scholar] [CrossRef]
- Uivarosi, V. Metal Complexes of Quinolone Antibiotics and Their Applications: An Update. Molecules 2013, 18, 11153–11197. [Google Scholar] [CrossRef]
- Jena, V. Electronic Spectra of Transition Metal Complexes; Lulu Press Inc.: New York, NY, USA, 2015. [Google Scholar]
- Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Sadeek, S.A.; EL-Shwiniy, W.H. Metal complexes of the third generation quinolone antibacterial drug sparfloxacin: Preparation, structure, and microbial evaluation. J. Coord. Chem. 2010, 63, 3471. [Google Scholar] [CrossRef]
- Macias, B.; Martinez, M.; Sanchez, A.; Dominguez-Gil, A.A. Physico-chemical study of the interaction of ciprofloxacin and ofloxacin with polivaientcations. Int. J. Pharm. 1994, 106, 229–235. [Google Scholar]
- Elshafie, H.S.; Mohamed, A.A.; Sadeek, S.A.; Zordok, W.A. Meloxicam and Study of Their Antimicrobial Effects Against Phyto- and Human Pathogens. Molecule 2021, 26, 1480. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Ahmed, F.M.; Zordok, W.A.; EL-Shwiniy, W.H.; Sadeek, S.A.; Elshafie, H.S. Novel Enrofloxacin Schiff Base Metal Complexes: Synthesis, Spectroscopic Characterization, Computational Simulation and Antimicrobial Investigation against Some Food and Phyto-Pathogens. Inorganics 2022, 10, 177. [Google Scholar] [CrossRef]
- Sadeek, S.A.; Abd El-Hamid, S.M. Preparation, characterization and cytotoxicity studies of some transition metal complexes with ofloxacin and 1,10-phenanthroline mixed ligand. J. Mol. Struct. 2016, 1122, 175–185. [Google Scholar] [CrossRef]
- Ringer, A.L.; Sherrill, C.D.; King, R.A.; Crawford, T.D. Low-lying singlet excited states of isocyanogen. Int. J. Quant. Chem. 2008, 108, 1137–1140. [Google Scholar] [CrossRef]
- Hoban, D.J.; Bouchillon, S.K.; Johnson, J.L.; Zhanel, G.G.; Butler, D.L.; Miller, L.A. Poupard JA Comparative in vitro activity of gemifloxacin, ciprofloxacin, levofloxacin and ofloxacin in a North American surveillance study. Diagn. Microbiol. Infect. Dis. 2001, 40, 51–57. [Google Scholar] [CrossRef]
- Fernández-Roblas, R.; Cabria, F.; Esteban, J.; López, J.C.; Gadea, I.; Soriano, F. In vitro activity of gemifloxacin (SB 265805) compared with 14 other antimicrobials against intestinal pathogens. J. Antimicrob. Chemother. 2000, 46, 1023–1027. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Camele, I.; Sofo, A.; Mazzone, G.; Caivano, M.; Masi, S.; Caniani, D. Mycoremediation effect of Trichoderma harzianum strain T22 combined with ozonation in diesel-contaminated sand. Chemosphere 2020, 252, 126597. [Google Scholar] [CrossRef]
- Saravolatz, L.; Manzor, O.; Check, C.; Pawlak, J.; Belian, B. Antimicrobial activity of moxifloxacin, gatifloxacin, and six fluoroquinolones against Streptococcus pneumoniae. J. Antimicrob. Chemother. 2001, 47, 875. [Google Scholar] [CrossRef] [Green Version]
- Cottagnoud, P.; Acosta, F.; Cottagnoud, M.; Tauber, M.G. Gemifloxacin is efficacious against penicillin-resistant and quinolone-resistant pneumococci in experimental meningitis. Antimicrob. Agents Chemother. 2002, 46, 1607–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakr, S.H.; Elshafie, H.S.; Camele, I.; Sadeek, S.A. Synthesis, Spectroscopic, and Biological Studies of Mixed Ligand Com-plexes of Gemifloxacin and Glycine with Zn(II), Sn(II), and Ce(III). Molecules 2018, 23, 1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheld, W.M. Maintaining fluoroquinolone class efficacy: Review of influencing factors. Emerg. Infect Dis. 2003, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compounds M.Wt. (M.F.) | Yield% | Mp/°C | Color | (Calcd.) Found (%) | Λ (S cm2 mol−1) | ||||
---|---|---|---|---|---|---|---|---|---|
C | H | N | Cl | M | |||||
L 197 (C13H11NO) | - | 50 (49–51) | Light-yellow | (79.18) 79.01 | (5.58) 5.52 | (7.10) 6.89 | - | - | 1.45 |
Phen 198.23 (C12H10N2O) | - | 100 | White | (72.64) 72.59 | (5.04) 4.87 | (14.12) 14.03 | - | - | 5.00 |
(1) 650.933 (CoC25H35N3O9Cl2) | 90.02 | >300 | Dark-green | (46.08) 45.92 | (5.37) 5.24 | (6.45) 6.19 | (10.90) 10.88 | (9.05) 8.99 | 95.80 (94.81–96.80) |
(2) 547.56 (CuC25H23N3O3Cl2) | 88.22 | 213 (212–214) | Dark-brown | (54.78) 54.72 | (4.20) 4.14 | (7.67) 7.62 | (12.94) (12.88) | (11.60) 11.52 | 90.40 (88.60–92.21) |
(3) 698.4 (YC25H33N3O8Cl3) | 91.34 | 220 (219–221) | Dark-blue | (42.95) 42.83 | (4.72) 4.57 | (6.01) 5.86 | (15.24) 15.18 | (12.72) 11.69 | 120.51 (119.20–121.83) |
(4) 573.334 (ZrC25H21N3O3Cl2) | 85.69 | >300 | Green | (52.32) 52.22 | (3.66) 3.56 | (7.32) 7.22 | (12.36) 12.25 | (15.91) 15.81 | 93.70 (92.69–94.71) |
(5) 658.4 (LaC25H23N3O3Cl3) | 89.12 | >300 | Yellow | (45.56) 45.41 | (3.49) 3.40 | (6.37) 6.31 | (16.15) 16.11 | (21.09) 21.02 | 125.80 (124.90–126.70) |
L | phen | (1) | (2) | (3) | (4) | (5) | Assignments |
---|---|---|---|---|---|---|---|
3426 mbr | 3380 sbr | 3433 mbr | 3426 mbr | 3378 mr | 3390 mbr | 3437 ms | ν(O–H); H2O |
1612 vs | 1600 vs | 1605 vs | 1601 s | 1600 vs | 1602 sh | ν(C=N) of azomethine group | |
1586 ms | 1526 m | 1527 ms | 1565 w | 1526 m | 1525 m | ν(C=N) pyridine ring | |
758 s 663 vw | 756 s 621 w | 726 w 657 m | 756 s 652 sh | 721 vs 630 m | ν(M–O) and ν(M–N) |
Compounds | Peak | Assignment | ε (M−1cm−1)x 104 | 10 Dq | CFSE# | μeff (B.M) | Postulated Structure | ||
---|---|---|---|---|---|---|---|---|---|
nm | cm−1 | cm−1 | kJ/mol | ||||||
L | 270 | 37,037 | π → π * | 0.600 | |||||
302 | 33,112 | n → π * | 0.800 | ||||||
318 | 31,446 | n → π * | 0.723 | ||||||
340 | 29,411 | n → π * | 0.769 | ||||||
Phen | 273 | 41,152 | π → π * | 1.500 | |||||
310 | 36,630 | n → π * | 2.000 | ||||||
350 | 28,571 | n → π * | 0.400 | ||||||
(1) | 275 | 36,363 | π → π * | 0.912 | 16,528 | 198 | 198+2p | 5.11 | octahedral |
300 | 33,333 | n → π * | 1.300 | ||||||
316 | 31,645 | n → π * | 0.812 | ||||||
338 | 29,585 | n → π * | 0.500 | ||||||
475 | 21,052 | CT | 0.423 | ||||||
605 | 16,528 | 4T1g → 41g | 0.350 | ||||||
(2) | 245 | 41,666 | π → π * | 1.320 | 17,241 | 206 | 206+4p | 1.70 | octahedral |
286 | 34,965 | n → π * | 0.780 | ||||||
397 | 25,188 | n → π * | 0.387 | ||||||
460 | 21,739 | CT | 0.312 | ||||||
580 | 17,241 | 2B1g → 2E1g | 0.200 | ||||||
(3) | 250 | 40,000 | π → π * | 1.600 | octahedral | ||||
275 | 34,129 | π → π * | 0.800 | ||||||
310 | 32,258 | n → π * | 0.750 | ||||||
318 | 22,123 | n → π * | 0.900 | ||||||
340 | 29,411 | n → π * | 0.950 | ||||||
480 | 20,833 | CT | 0.500 | ||||||
(4) | 247 | 40,485 | π → π * | 1.200 | |||||
265 | 37,735 | π → π * | 1.620 | ||||||
346 | 28,901 | n → π * | 0.200 | ||||||
465 | 21,505 | CT | 0.450 | ||||||
(5) | 244 | 40,983 | π → π * | 2.230 | octahedral | ||||
275 | 36,363 | π → π * | 1.330 | ||||||
320 | 31,250 | n → π * | 1.230 | ||||||
345 | 28,985 | n → π * | 1.450 | ||||||
467 | 21,413 | CT | 0.650 |
L | Phen | (1) | (2) | (3) | (4) | (5) | Assignments |
---|---|---|---|---|---|---|---|
2.48 | - | 1.98–2.51 | 1.25–2.50 | 2.51 | 1.99–2.53 | 2.50 | δH, –CH aliphatic |
- | 3.37 | 4.35 | 3.37 | 3.36 | 4.17 | 3.33 | δH, H2O |
6.96–8.95 | 7.26–8.81 | 7.11–8.95 | 7.54 | 7.31–8.96 | 7.02–8.50 | 7.00–8.96 | δH, –CH aromatic |
13.09 | - | 13.01 | 13.00 | 13.02 | 14.87 | 13.00 | δH, –OH |
Compounds | Decomposition | Tmax (°C) | Weight Loss (%) | Lost Species | |
---|---|---|---|---|---|
Calc. | Found | ||||
L | First step | 200 | 100.00 | 99.68 | 2C4H2 + H2O + 0.5N2 + 2.5C2H2 |
Total loss | 100.00 | 99.68 | |||
phen | First step | 95 | 9.08 | 8.98 | H2O |
Second step | 278 | 90.92 | 90.87 | 2C4H2 + 2C2H2 + N2 | |
Total loss | 100 | 100 | |||
(1) | First step | 41 | 16.59 | 16.22 | 6H2O |
Second step | 172,258 | 52.55 | 52.64 | 6C2H2 + C2N2 + H2O + 2C4H2 + 0.5O2 | |
Third step | 330,432,657 | 15.67 | 15.80 | CH4 + 0.5Cl2 + 0.5N2 + HCl | |
Total loss | 84.81 | 84.66 | |||
Residue | 15.19 | 15.34 | CoO + 2C | ||
(2) | First step | 175,288 | 25.57 | 25.51 | 2H2O + 4C2H2 |
Second step | 495 | 62.83 | 62.80 | 4C4H2 + CO + 2HCl + 1.5N2 + 0.5H2 | |
Total loss | 88.40 | 88.31 | |||
Residue | 11.60 | 11.69 | Cu | ||
(3) | First step | 85 | 12.89 | 12.85 | 5H2O |
Second step | 150,283 | 49.81 | 49.79 | 2H2O + 12C2H2 | |
Third step | 475,810 | 19.41 | 19.40 | 3HCl + 0.5H2 + 2NO + NO2 + 0.5H2O | |
Total loss | 82.11 | 82.04 | |||
Residue | 17.89 | 17.96 | 0.5Y2O3 + C | ||
(4) | First step | 220 | 17.44 | 17.40 | 3C4H2 |
Second step | 530 | 52.70 | 52.80 | 2C4H2 + CO + 2HCl + 3NH3 | |
Total loss | 70.14 | 70.20 | |||
Residue | 29.86 | 29.80 | ZrO2 + 4C | ||
(5) | First step | 174 | 5.47 | 5.40 | 2H2O |
Second step | 428,506 | 67.95 | 67.88 | 9C2H2 + C2N2 + CO + HCN + 1.5Cl2 | |
Total loss | 73.42 | 73.28 | |||
Residue | 26.58 | 26.72 | La + 3C |
Tested Compounds | Tested Microbial Species | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
G(+ve) Bacteria | G(−ve) Bacteria | Fungi | ||||||||
S. aureus | M. luteus | E. coli | Salm. typhi | C. albicans | ||||||
D.Iz a (mm) | AI b (%) | D.Iz (mm) | AI (%) | D.Iz (mm) | AI (%) | D.Iz (mm) | AI (%) | D.Iz (mm) | AI (%) | |
L | 8 ±0.17 | 32 | 10 ±0.08 | 34.48 | 8 ±0.12 | 23.52 | 8 ±0.14 | 25 | 9 ±0.19 | 50 |
Phen | 8 ±0.39 | 32 | 9 ±0.24 | 31.03 | 8 ±0.13 | 35.52 | 7 ±0.31 | 21.87 | 8 ±0.36 | 44.44 |
(1) | 9 NS ±0.50 | 36 | 10 ±0.41 | 34.48 | 9 NS ±0.42 | 26.47 | 8 ±0.21 | 25 | 9 ±0.44 | 50 |
(2) | 9 NS ±0.48 | 36 | 10 ±0.20 | 34.48 | 9 NS ±0.35 | 26.47 | 8 ±0.29 | 25 | 9 ±0.59 | 50 |
(3) | 9 NS ±0.59 | 36 | 11 NS ±0.32 | 37.93 | 9 NS ±0.52 | 26.47 | 8 ±0.40 | 25 | 11 NS ±0.70 | 61.11 |
(4) | 8 ±0.18 | 32 | 10 ±0.27 | 34.48 | 8 ±0.23 | 23.52 | 7 ±0.28 | 21.87 | 10 NS ±0.66 | 55.55 |
(5) | 9 NS ±0.64 | 36 | 11 NS ±0.35 | 37.93 | 9 NS ±0.55 | 26.47 | 8 ±0.33 | 25 | 12 +1 ±0.37 | 66.66 |
Ciprofloxacin (control) | 25 ±0.3 | 100 | 29 ±0.2 | 100 | 34 ±1.11 | 100 | 32 ±0.98 | 100 | 0 | 0 |
Nystatin (control) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 ±0.42 | 100 |
DMSO (control) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DMF (control) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, A.A.; Nassr, A.A.; Sadeek, S.A.; Elshafie, H.S. Synthesis and Spectral, Thermal and Antimicrobial Investigation of Mixed Ligand Metal Complexes of N-Salicylidene Aniline and 1,10-Phenanthroline. Compounds 2023, 3, 298-309. https://doi.org/10.3390/compounds3010022
Mohamed AA, Nassr AA, Sadeek SA, Elshafie HS. Synthesis and Spectral, Thermal and Antimicrobial Investigation of Mixed Ligand Metal Complexes of N-Salicylidene Aniline and 1,10-Phenanthroline. Compounds. 2023; 3(1):298-309. https://doi.org/10.3390/compounds3010022
Chicago/Turabian StyleMohamed, Amira A., Abeer A. Nassr, Sadeek A. Sadeek, and Hazem S. Elshafie. 2023. "Synthesis and Spectral, Thermal and Antimicrobial Investigation of Mixed Ligand Metal Complexes of N-Salicylidene Aniline and 1,10-Phenanthroline" Compounds 3, no. 1: 298-309. https://doi.org/10.3390/compounds3010022
APA StyleMohamed, A. A., Nassr, A. A., Sadeek, S. A., & Elshafie, H. S. (2023). Synthesis and Spectral, Thermal and Antimicrobial Investigation of Mixed Ligand Metal Complexes of N-Salicylidene Aniline and 1,10-Phenanthroline. Compounds, 3(1), 298-309. https://doi.org/10.3390/compounds3010022