Recent Progress on Natural Rubber-Based Materials Containing Metallic and Metal Oxide Nanoparticles: State of the Art and Biomedical Applications
Abstract
:1. Introduction
2. Natural Rubber Latex: Source, Composition, and Antimicrobial Properties
2.1. Obtaining and Composition of NRL
2.2. Antimicrobial Properties of NRL
3. Metallic and Metal Oxide NPs: Synthesis and Biological Properties
3.1. Silver Nanoparticles
3.2. Copper Nanoparticles
3.3. Gold Nanoparticles
3.4. Metal Oxide Nanoparticles
3.5. Synthesis of NPs
3.5.1. Physical Approach
3.5.2. Chemical Approach
3.5.3. Biological Approach
3.6. Mechanism of Bactericidal Activity of NPs
4. Natural Rubber-Based Materials Containing Metallic and Oxide NPs
Rubber Type | NPs Type | Synthesis Method | Composite Production | Composite Application | Reference |
---|---|---|---|---|---|
NRLF | AgNPs colloid (200,000 ppm) | Chemical method | Mixing and stirring of the silver colloid with the NRL | Antibacterial activity against E. coli and S. aureus | Mam et al. [118] |
Centrifuged NRL | AgNPs | Green synthesis | Synthesized AgNPs into the centrifuged NRL in situ | Antimicrobial properties against E. coli, S. aureus, and S. epidermidis | Rathnayake et al. [96] |
NRLF | Silver nanocolloids | Chemical method | Silver nanocolloid incorporated into NRLF formulation | Antibacterial and antifungal properties | Rathnayake et al. [120] |
Latex foams | AgNPs | Biological methods (Magnolia kobus leaf extract) | Dip coating and ultrasonic treatment | Antibacterial activity against E. coli | Song et al. [114] |
NRL | AgNPs | Green synthesis | In situ synthesis of AgNPs in NRL without reducing agent | Antimicrobial properties against E. coli and S. aureus | Phinyocheep et al. [97] |
Skim NRL (with 0.05 wt% dry rubber content) | AgNPs | Chemical method | Silver nitrate solution mixed with diluted skim NRL | Antimicrobial properties against E. coli and S. aureus | Suwatthanarak et al. [121] |
NRLF | AgNPs | Chemical method | AgNPs solution incorporated into the foam matrix by stirring | Antibacterial activity against S. aureus | Rathnayake et al. [1] |
NRL concentrated | AgNPs | Chemical method with microwave using PVP | Mixing and casting method | Antimicrobial properties against E. coli and S. aureus | Prasanseang et al. [122] |
NRLF | Ag-doped TiO2NPs | Chemical method | Mixing and stirring of Ag-TiO2NPs with the NRL | Antimicrobial activity against S. epidermidis, methicillin-resistant S. aureus, and E. coli strains | Rathnayake et al. [123] |
NRL | AgNPs | Physical method | NRL-propolis membranes with AgNPs deposited by magnetron sputtering technique | Dressings with bactericide properties | Garcia et al. [81] |
NRL | AgNPs | Chemical method | Casting method | Dressing for the treatment of infectious processes | Miranda et al. [124] |
NRL | AuNPs | Purchased from Sigma-Aldrich | NRL membranes immersed in the AuNPs solution | Dressings for the treatment of the Leishmaniasis parasite | Barboza-Filho et al. [125] |
NRL | AuNPs | Chemical method | Different concentrations of NRL in water and mixed with HAuCl4 suspension | Cell imaging and anticancer treatment | Santos et al. [126] |
NRLF | ZnONPs | Purchased from Sigma-Aldrich | ZnONPs were incorporated into the NRL matrix and cured in oven for 2 h at 100 °C | Antimicrobial activity against S. aureus and E. coli | Rathnayake et al. [127] |
NR | ZnONPs with CaCO3 | Supplied by Global Chemical Co., Ltd. | Latex mixing technique | Development of gloves, condoms, and clothes | Krainoi et al. [128] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rathnayake, I.; Ismail, H.; Bin Azahari, B.; Darsanasiri, N.D.; Rajapakse, S. Synthesis and Characterization of Nano-Silver Incorporated Natural Rubber Latex Foam. Polym. Technol. Eng. 2012, 51, 605–611. [Google Scholar] [CrossRef]
- Fong, Y.C.; Khin, A.A.; Lim, C.S. Conceptual Review and the Production, Consumption and Price Models of the Natural Rubber Industry in Selected ASEAN Countries and World Market. Asian J. Econ. Model. 2018, 6, 403–418. [Google Scholar] [CrossRef] [Green Version]
- Suksup, R.; Sun, Y.; Sukatta, U.; Smitthipong, W. Foam rubber from centrifuged and creamed latex. J. Polym. Eng. 2019, 39, 336–342. [Google Scholar] [CrossRef]
- Bode, H.B.; Kerkhoff, K.; Jendrossek, D. Bacterial Degradation of Natural and Synthetic Rubber. Biomacromolecules 2001, 2, 295–303. [Google Scholar] [CrossRef]
- Yip, E.; Cacioli, P. The manufacture of gloves from natural rubber latex. J. Allergy Clin. Immunol. 2002, 110, S3–S14. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garza-Cervantes, J.A.; Chávez-Reyes, A.; Castillo, E.C.; García-Rivas, G.; Ortega-Rivera, O.A.; Salinas, E.; Ortiz-Martínez, M.; Gómez-Flores, S.L.; Peña-Martínez, J.A.; Pepi-Molina, A.; et al. Synergistic Antimicrobial Effects of Silver/Transition-metal Combinatorial Treatments. Sci. Rep. 2017, 7, 903–920. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012, 2, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Grigore, M.E.; Biscu, E.R.; Holban, A.M.; Gestal, M.C.; Grumezescu, A.M. Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles. Pharmaceuticals 2016, 9, 75. [Google Scholar] [CrossRef]
- Bankier, C.; Matharu, R.K.; Cheong, Y.K.; Ren, G.G.; Cloutman-Green, E.; Ciric, L. Synergistic Antibacterial Effects of Metallic Nanoparticle Combinations. Sci. Rep. 2019, 9, 16074–16082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eren, T.; Baysal, G.; Doğan, F. Biocidal Activity of Bone Cements Containing Curcumin and Pegylated Quaternary Polyethylenimine. J. Polym. Environ. 2020, 28, 2469–2480. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurunathan, S.; Han, J.W.; Dayem, A.A.; Eppakayala, V.; Kim, J.-H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 2012, 7, 5901–5914. [Google Scholar] [CrossRef] [Green Version]
- Nagy, A.; Harrison, A.; Sabbani, S.; Munson, R.S., Jr.; Dutta, P.K.; Waldman, W.J. Silver nanoparticles embedded in zeolite membranes: Release of silver ions and mechanism of antibacterial action. Int. J. Nanomed. 2011, 6, 1833–1852. [Google Scholar] [CrossRef] [Green Version]
- Leung, Y.H.; Ng, A.M.C.; Xu, X.; Shen, Z.; Gethings, L.A.; Wong, M.T.; Chan, C.M.N.; Guo, M.Y.; Ng, Y.H.; Djurišić, A.B.; et al. Mechanisms of Antibacterial Activity of MgO: Non-ROS Mediated Toxicity of MgO Nanoparticles towards Escherichia coli. Small 2013, 10, 1171–1183. [Google Scholar] [CrossRef]
- Berthelot, K.; Peruch, F.; Lecomte, S. Highlights on Hevea brasiliensis (pro)hevein proteins. Biochimie 2016, 127, 258–270. [Google Scholar] [CrossRef]
- Bottier, C. Biochemical Composition of Hevea Brasiliensis Latex: A Focus on the Protein, Lipid, Carbohydrate and Mineral Contents. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2020; pp. 201–237. [Google Scholar] [CrossRef]
- Kurian, T.; Mathew, N.M. Natural Rubber: Production, Properties and Applications. In Biopolymers; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 403–436. [Google Scholar] [CrossRef]
- Pinto-Salamanca, C.-E.; Rigail-Cedeño, A.F.; Oliveros, M.E.M. Synthesis and characterization of natural rubber/clay nanocomposite to develop electrical safety gloves. Mater. Today Proc. 2020, 33, 1949–1953. [Google Scholar] [CrossRef]
- Miranda, M.C.R.; Borges, F.A.; Barros, N.R.; Filho, N.A.S.; Mendonça, R.J.; Herculano, R.D.; Cilli, E.M. Evaluation of peptides release using a natural rubber latex biomembrane as a carrier. Amino Acids 2018, 50, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Kanokwiroon, K.; Teanpaisan, R.; Wititsuwannakul, D.; Hooper, A.B.; Wititsuwannakul, R. Antimicrobial activity of a protein purified from the latex of Hevea brasiliensis on oral microorganisms. Mycoses 2008, 51, 301–307. [Google Scholar] [CrossRef]
- Martin, M.N. The Latex of Hevea brasiliensis Contains High Levels of Both Chitinases and Chitinases/Lysozymes. Plant Physiol. 1991, 95, 469–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, J.E.; Krishnaswamy, V.G. Isolation of natural rubber latex degrading bacterial consortium from rubber plantation area. Eur. J. Exp. Biol. 2020, 10, 1–9. [Google Scholar]
- Button, D.W. Building a natural rubber latex compound. J. Chem. Educ. 1957, 34, 255–260. [Google Scholar] [CrossRef]
- Nair, K.P. Tree Crops; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Semegen, S.T. Rubber, Natural. In Encyclopedia of Physical Science and Technology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 381–394. [Google Scholar] [CrossRef]
- Nascimento, R.M.D.; de Paula, A.J.; Oliveira, N.C.; Alves, A.C.; Aquino, Y.M.L.D.O.; Filho, A.G.S.; Rodrigues, J.E.F.S.; Hernandes, A.C. Towards the production of natural rubber-calcium phosphate hybrid for applications as bioactive coatings. Mater. Sci. Eng. C 2019, 94, 417–425. [Google Scholar] [CrossRef]
- Tanaka, Y. Recent Advances in Structural Characterization of Elastomers. Rubber Chem. Technol. 1991, 64, 325–385. [Google Scholar] [CrossRef]
- Guerra, N.B.; Pegorin, G.S.; Boratto, M.H.; de Barros, N.R.; Graeff, C.F.D.O.; Herculano, R.D. Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. Mater. Sci. Eng. C 2021, 126, 112126–112144. [Google Scholar] [CrossRef]
- Herculano, R.D.; Silva, C.P.; Ereno, C.; Guimaraes, S.A.C.; Kinoshita, A.; de Oliveira Graeff Graeff, C.F. Natural rubber latex used as drug delivery system in guided bone regeneration (GBR). Mater. Res. 2009, 12, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Herculano, R.D.; Tzu, L.C.; Silva, C.P.; Brunello, C.A.; de Queiroz, A.A.; Kinoshita, A.; Graeff, C.F.D.O. Nitric oxide release using natural rubber latex as matrix. Mater. Res. 2011, 14, 355–359. [Google Scholar] [CrossRef] [Green Version]
- de Barros, N.R.; Miranda, M.C.R.; Borges, F.A.; de Mendonça, R.J.; Cilli, E.M.; Herculano, R.D. Oxytocin Sustained Release Using Natural Rubber Latex Membranes. Int. J. Pept. Res. Ther. 2016, 22, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.; Mendonca, R.; Coutinho-Netto, J.; Mulato, M. Angiogenic properties of natural rubber latex biomembranes and the serum fraction of Hevea brasiliensis. Braz. J. Phys. 2009, 39, 564–569. [Google Scholar] [CrossRef]
- Brüning, K. Natural Rubber. In Encyclopedia of Polymeric Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1377–1382. [Google Scholar] [CrossRef]
- Giordani, R.; Gachon, C.; Buc, J.; Regli, P.; Jacob, J.L. Antifungal action of Hevea brasiliensis latex. Its effect in combination with fluconazole on Candida albicans growth. Mycoses 1999, 42, 465–474. [Google Scholar] [CrossRef]
- Boonrasri, S.; Sae–Oui, P.; Rachtanapun, P. Chitosan and Natural Rubber Latex Biocomposite Prepared by Incorporating Negatively Charged Chitosan Dispersion. Molecules 2020, 25, 2777. [Google Scholar] [CrossRef] [PubMed]
- Arakkal, A.; Aazem, I.; Honey, G.; Vengellur, A.; Bhat, S.G.; Sailaja, G.C.S. Antibacterial Polyelectrolytic chitosan derivatives conjugated natural rubber latex films with minimized bacterial adhesion. J. Appl. Polym. Sci. 2020, 138, 49608. [Google Scholar] [CrossRef]
- Van Parijs, J.; Broekaert, W.F.; Goldstein, I.J.; Peumans, W.J. Hevein: An antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 1991, 183, 258–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churngchow, N.; Suntaro, A.; Witttsuwannnakul, R. β-1,3-glucanase isozymes from the latex of Hevea brasiliensis. Phytochemistry 1995, 39, 505–509. [Google Scholar] [CrossRef]
- A Daruliza, K.M.; Lam, K.L.; Yang, K.L.; Priscilla, J.T.; Sunderasan, E.; Ong, M.T. Anti-fungal effect of Hevea brasiliensis latex C-serum on Aspergillus niger. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 1027–1033. [Google Scholar]
- Singh, A.; Gautam, P.K.; Verma, A.; Singh, V.; Shivapriya, P.M.; Shivalkar, S.; Sahoo, A.K.; Samanta, S.K. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol. Rep. 2020, 25, e00427–e00440. [Google Scholar] [CrossRef]
- Wilson, D.N.; Hauryliuk, V.; Atkinson, G.C.; O’Neill, A.J. Target protection as a key antibiotic resistance mechanism. Nat. Rev. Microbiol. 2020, 18, 637–648. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Das, S.S.; Khatoon, A.; Ansari, M.T.; Afzal, M.; Hasnain, S.; Nayak, A.K. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol. 2020, 3, 756–769. [Google Scholar] [CrossRef]
- Medina, J.; Garcia-Perez, V.I.; Zanella, R. Metallic composites based on Ag, Cu, Au and Ag-Cu nanoparticles with distinctive bactericidal effect on varied species. Mater. Today Commun. 2021, 26, 102182–102192. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int. J. Mol. Sci. 2019, 20, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Jacob, M.V.; Antunes, E. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. J. Environ. Manag. 2021, 281, 111918. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.; Gunasekara, T.; Holton, J. Antimicrobial Nanoparticles: Applications and mechanisms of action. Sri Lankan J. Infect. Dis. 2018, 8, 2–11. [Google Scholar] [CrossRef]
- Yaqub, A.; Malkani, N.; Shabbir, A.; Ditta, S.A.; Tanvir, F.; Ali, S.; Naz, M.; Kazmi, S.A.R.; Ullah, R. Novel Biosynthesis of Copper Nanoparticles Using Zingiber and Allium sp. with Synergic Effect of Doxycycline for Anticancer and Bactericidal Activity. Curr. Microbiol. 2020, 77, 2287–2299. [Google Scholar] [CrossRef] [PubMed]
- Khademi-Azandehi, P.; Moghaddam, J. Green synthesis, characterization and physiological stability of gold nanoparticles from Stachys lavandulifolia Vahl extract. Particuology 2015, 19, 22–26. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Vaseeharan, B.; Malaikozhundan, B.; Gopi, N.; Ekambaram, P.; Pachaiappan, R.; Velusamy, P.; Murugan, K.; Benelli, G.; Kumar, R.S.; et al. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549). Microb. Pathog. 2017, 102, 173–183. [Google Scholar] [CrossRef]
- Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Mohan, S.; Venkatesh, K.S.; Esakkirajan, M.; Kaleeswarran, P.; Alharbi, N.S.; Kadaikunnan, S.; Govindarajan, M.; et al. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb. Pathog. 2016, 101, 1–11. [Google Scholar] [CrossRef]
- Guerra, R.; Lima, E.; Guzmán, A. Antimicrobial supported nanoparticles: Gold versus silver for the cases of Escherichia coli and Salmonella typhi. Microporous Mesoporous Mater. 2012, 170, 62–66. [Google Scholar] [CrossRef]
- Katas, H.; Lim, C.S.; Azlan, A.Y.H.N.; Buang, F.; Busra, M.F.M. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm. J. 2019, 27, 283–292. [Google Scholar] [CrossRef]
- Khan, F.U.; Chen, Y.; Ahmad, A.; Tahir, K.; Khan, Z.U.; Khan, A.U.; Khan, S.U.; Raza, M.; Wan, P. Visible light inactivation of E. coli, Cytotoxicity and ROS determination of biochemically capped gold nanoparticles. Microb. Pathog. 2017, 107, 419–424. [Google Scholar] [CrossRef]
- Hussein, M.A.M.; Grinholc, M.; Dena, A.S.A.; El-Sherbiny, I.M.; Megahed, M. Boosting the antibacterial activity of chitosan–gold nanoparticles against antibiotic–resistant bacteria by Punicagranatum L. extract. Carbohydr. Polym. 2021, 256, 117498. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yang, J.; Zhang, J.; Zheng, W.; Jiang, X. Activating the Antibacterial Effect of 4,6-Diamino-2-pyrimidinethiol-Modified Gold Nanoparticles by Reducing their Sizes. Angew. Chem. Int. Ed. 2020, 59, 23471–23475. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, J.; Wang, L.; Ran, B.; Jia, Y.; Zhang, L.; Yang, G.; Shao, H.; Jiang, X. Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application via an Electrospun Scaffold. ACS Nano 2017, 11, 5737–5745. [Google Scholar] [CrossRef]
- Krishnan, B.; Mahalingam, S. Improved surface morphology of silver/copper oxide/bentonite nanocomposite using aliphatic ammonium based ionic liquid for enhanced biological activities. J. Mol. Liq. 2017, 241, 1044–1058. [Google Scholar] [CrossRef]
- Nikolova, M.P.; Chavali, M.S. Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics 2020, 5, 27. [Google Scholar] [CrossRef]
- Niño-Martínez, N.; Salas Orozco, M.F.; Martínez-Castañón, G.-A.; Torres Méndez, F.; Ruiz, F. Molecular Mechanisms of Bacterial Resistance to Metal and Metal Oxide Nanoparticles. Int. J. Mol. Sci. 2019, 20, 2808. [Google Scholar] [CrossRef] [Green Version]
- Manuja, A.; Kumar, B.; Kumar, R.; Chhabra, D.; Ghosh, M.; Manuja, M.; Brar, B.; Pal, Y.; Tripathi, B.; Prasad, M. Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol. Rep. 2021, 8, 1970–1978. [Google Scholar] [CrossRef] [PubMed]
- Kovalishyn, V.; Abramenko, N.; Kopernyk, I.; Charochkina, L.; Metelytsia, L.; Tetko, I.V.; Peijnenburg, W.; Kustov, L. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform. Food Chem. Toxicol. 2018, 112, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Winkler, D.A. Role of Artificial Intelligence and Machine Learning in Nanosafety. Small 2020, 16, 2001883–2001889. [Google Scholar] [CrossRef]
- Kalpana, V.N.; Rajeswari, V.D. A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies of ZnO NPs. Bioinorg. Chem. Appl. 2018, 2018, 3569758. [Google Scholar] [CrossRef] [PubMed]
- Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. A Mini Review of Antibacterial Properties of ZnO Nanoparticles. Front. Phys. 2021, 9, 641481. [Google Scholar] [CrossRef]
- Sahoo, S.; Maiti, M.; Ganguly, A.; George, J.J.; Bhowmick, A.K. Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber. J. Appl. Polym. Sci. 2007, 105, 2407–2415. [Google Scholar] [CrossRef]
- Pushpalatha, C.; Suresh, J.; Gayathri, V.; Sowmya, S.; Augustine, D.; Alamoudi, A.; Zidane, B.; Albar, N.H.M.; Patil, S. Zinc Oxide Nanoparticles: A Review on Its Applications in Dentistry. Front. Bioeng. Biotechnol. 2022, 10, 917990. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Pi, J.; Cai, J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl. 2018, 2018, 1062562. [Google Scholar] [CrossRef] [PubMed]
- Çeşmeli, S.; Avci, C.B. Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J. Drug Target. 2019, 27, 762–766. [Google Scholar] [CrossRef]
- Ilyas, M.; Waris, A.; Khan, A.U.; Zamel, D.; Yar, L.; Baset, A.; Muhaymin, A.; Khan, S.; Ali, A.; Ahmad, A. Biological synthesis of titanium dioxide nanoparticles from plants and microorganisms and their potential biomedical applications. Inorg. Chem. Commun. 2021, 133, 108968. [Google Scholar] [CrossRef]
- Naseri, N.; Janfaza, S.; Irani, R. Visible light switchable bR/TiO 2 nanostructured photoanodes for bio-inspired solar energy conversion. RSC Adv. 2015, 5, 18642–18646. [Google Scholar] [CrossRef]
- De Filpo, G.; Palermo, A.M.; Rachiele, F.; Nicoletta, F.P. Preventing fungal growth in wood by titanium dioxide nanoparticles. Int. Biodeterior. Biodegrad. 2013, 85, 217–222. [Google Scholar] [CrossRef]
- Jafari, S.; Mahyad, B.; Hashemzadeh, H.; Janfaza, S.; Gholikhani, T.; Tayebi, L. Biomedical Applications of TiO2 Nanostructures: Recent Advances. Int. J. Nanomed. 2020, 15, 3447–3470. [Google Scholar] [CrossRef]
- Shen, L.; Li, B.; Qiao, Y. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials 2018, 11, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsalani, S.; Guidelli, E.J.; Araujo, J.; Bruno, A.C.; Baffa, O. Green Synthesis and Surface Modification of Iron Oxide Nanoparticles with Enhanced Magnetization Using Natural Rubber Latex. ACS Sustain. Chem. Eng. 2018, 6, 13756–13765. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Umar, K.; Ibrahim, M.N.M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications—A review. Appl. Nanosci. 2020, 10, 1369–1378. [Google Scholar] [CrossRef]
- Correa, M.G.; Martínez, F.B.; Vidal, C.P.; Streitt, C.; Escrig, J.; de Dicastillo, C.L. Antimicrobial metal-based nanoparticles: A review on their synthesis, types and antimicrobial action. Beilstein J. Nanotechnol. 2020, 11, 1450–1469. [Google Scholar] [CrossRef]
- Giovanela, C.S.C.G.; Crespo, M.J.S.; Roesch-Ely, M.; Henriques, J.A.P.; Aguzzoli, C.; Maddalozzo, A.E.D. Filmes, Processos de Obtenção dos Filmes e Uso dos Filmes. Patent BR1020190107154 2019. [Google Scholar]
- Garcia, C.S.C.; Maddalozzo, A.E.D.; Garcia, P.M.C.; Fontoura, C.P.; Rodrigues, M.M.; Giovanela, M.; Henriques, J.A.P.; Aguzzoli, C.; Crespo, J.D.S.; Roesch-Ely, M. Natural Rubber Films Incorporated with Red Propolis and Silver Nanoparticles Aimed for Occlusive Dressing Application. Mater. Res. 2021, 24, 1–16. [Google Scholar] [CrossRef]
- Syafiuddin, A.; Salmiati; Salim, M.R.; Kueh, A.B.H.; Hadibarata, T.; Nur, H. A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. J. Chin. Chem. Soc. 2017, 64, 732–756. [Google Scholar] [CrossRef]
- Chugh, H.; Sood, D.; Chandra, I.; Tomar, V.; Dhawan, G.; Chandra, R. Role of gold and silver nanoparticles in cancer nano-medicine. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1210–1220. [Google Scholar] [CrossRef]
- Natsuki, J.; Natsuki, T.; Hashimoto, Y. A Review of Silver Nanoparticles: Synthesis Methods, Properties and Applications. Int. J. Mater. Sci. Appl. 2015, 4, 325. [Google Scholar] [CrossRef] [Green Version]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Gunnarsson, R.; Helmersson, U.; Pilch, I. Synthesis of titanium-oxide nanoparticles with size and stoichiometry control. J. Nanopart. Res. 2015, 17, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Dreesen, L.; Colomer, J.-F.; Limage, H.; Giguère, A.; Lucas, S. Synthesis of titanium dioxide nanoparticles by reactive DC magnetron sputtering. Thin Solid Films 2009, 518, 112–115. [Google Scholar] [CrossRef]
- Kwoka, M.; Lyson-Sypien, B.; Kulis, A.; Maslyk, M.; Borysiewicz, M.A.; Kaminska, E.; Szuber, J. Surface Properties of Nanostructured, Porous ZnO Thin Films Prepared by Direct Current Reactive Magnetron Sputtering. Materials 2018, 11, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Buhler, E.; Boué, F.; Carn, F. How does the size of gold nanoparticles depend on citrate to gold ratio in Turkevich synthesis? Final answer to a debated question. J. Colloid Interface Sci. 2017, 492, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Piszczek, P.; Lewandowska, A.; Radtke, A.; Jędrzejewski, T.; Kozak, W.; Sadowska, B.; Szubka, M.; Talik, E.; Fiori, F. Biocompatibility of Titania Nanotube Coatings Enriched with Silver Nanograins by Chemical Vapor Deposition. Nanomaterials 2017, 7, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danna, C.S.; Cavalcante, D.G.S.M.; Gomes, A.S.; Kerche-Silva, L.E.; Yoshihara, E.; Osorio-Román, I.O.; Salmazo, L.O.; Rodríguez-Pérez, M.A.; Aroca, R.F.; Job, A.E. Silver Nanoparticles Embedded in Natural Rubber Films: Synthesis, Characterization, and Evaluation of In Vitro Toxicity. J. Nanomater. 2016, 2016, 2368630. [Google Scholar] [CrossRef] [Green Version]
- Marques, L.; Martinez, G.; Guidelli, J.; Tamashiro, J.; Segato, R.; Payão, S.L.M.; Baffa, O.; Kinoshita, A. Performance on Bone Regeneration of a Silver Nanoparticle Delivery System Based on Natural Rubber Membrane NRL-AgNP. Coatings 2020, 10, 323. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Dutta, T.; Kim, K.-H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 84–89. [Google Scholar] [CrossRef]
- Guidelli, E.J.; Ramos, A.P.; Zaniquelli, M.E.D.; Baffa, O. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 82, 140–145. [Google Scholar] [CrossRef]
- Bakar, N.H.H.; Ismail, J.; Bakar, M. Synthesis and characterization of silver nanoparticles in natural rubber. Mater. Chem. Phys. 2007, 104, 276–283. [Google Scholar] [CrossRef]
- Rathnayake, I.; Ismail, H.; Azahari, B.; De Silva, C.; Darsanasiri, N. Imparting antimicrobial properties to natural rubber latex foam via green synthesized silver nanoparticles. J. Appl. Polym. Sci. 2013, 131, 1–10. [Google Scholar] [CrossRef]
- Phinyocheep, P. In-situ green synthesis of silver nanoparticles in natural rubber latex for fabricating rubber composite with antimicrobial property. Int. J. Sci. Innov. Technol. 2021, 4, 11–20. [Google Scholar]
- Guidelli, É.J.; Kinoshita, A.; Ramos, A.P.; Baffa, O. Silver nanoparticles delivery system based on natural rubber latex membranes. J. Nanopart. Res. 2013, 15, 1536. [Google Scholar] [CrossRef]
- Fanoro, O.T.; Oluwafemi, O.S. Bactericidal Antibacterial Mechanism of Plant Synthesized Silver, Gold and Bimetallic Nanoparticles. Pharmaceutics 2020, 12, 1044. [Google Scholar] [CrossRef] [PubMed]
- Khorrami, S.; Zarrabi, A.; Khaleghi, M.; Danaei, M.; Mozafari, M.R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomed. 2018, 13, 8013–8024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, T.A.; Franchi, L.P.; Rosa, L.R.; Veiga, M.; Takahashi, C.S. Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat. Res. Toxicol. Environ. Mutagen. 2016, 795, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.-L.; Teow, S.-Y.; Pushpamalar, J. Application of Metal Nanoparticle–Hydrogel Composites in Tissue Regeneration. Bioengineering 2019, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Y.-P.; Ma, B.-Y.; Wei, X.-W.; Qian, Z.-Y. The in vitro and in vivo toxicity of gold nanoparticles. Chin. Chem. Lett. 2017, 28, 691–702. [Google Scholar] [CrossRef]
- Tentor, F.R.; de Oliveira, J.H.; Scariot, D.B.; Lazarin-Bidóia, D.; Bonafé, E.G.; Nakamura, C.V.; Venter, S.A.; Monteiro, J.P.; Muniz, E.C.; Martins, A.F. Scaffolds based on chitosan/pectin thermosensitive hydrogels containing gold nanoparticles. Int. J. Biol. Macromol. 2017, 102, 1186–1194. [Google Scholar] [CrossRef]
- Boonkaew, B.; Kempf, M.; Kimble, R.; Cuttle, L. Cytotoxicity testing of silver-containing burn treatments using primary and immortal skin cells. Burns 2014, 40, 1562–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Söderstjerna, E.; Bauer, P.; Cedervall, T.; Abdshill, H.; Johansson, F.; Johansson, U.E. Silver and Gold Nanoparticles Exposure to In Vitro Cultured Retina—Studies on Nanoparticle Internalization, Apoptosis, Oxidative Stress, Glial- and Microglial Activity. PLoS ONE 2014, 9, e105359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostić, D.D.; Malagurski, I.S.; Obradović, B.M. Transport of silver nanoparticles from nanocomposite Ag/alginate hydrogels under conditions mimicking tissue implantation. Chem. Ind. 2017, 71, 383–394. [Google Scholar] [CrossRef]
- Gunawan, C.; Teoh, W.Y.; Marquis, C.P.; Amal, R. Induced Adaptation of Bacillus sp. to Antimicrobial Nanosilver. Small 2013, 9, 3554–3560. [Google Scholar] [CrossRef]
- Panáček, A.; Kvítek, L.; Smékalová, M.; Večeřová, R.; Kolář, M.; Röderová, M.; Dyčka, F.; Šebela, M.; Prucek, R.; Tomanec, O.; et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 2017, 13, 65–71. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Y.; Wang, Y.-H.; Jiang, H.; Wang, X. Advances and challenges in metallic nanomaterial synthesis and antibacterial applications. J. Mater. Chem. B 2020, 8, 4764–4777. [Google Scholar] [CrossRef]
- Avirdi, E.; Hooshmand, S.E.; Sepahvand, H.; Vishwanathan, V.; Bahadur, I.; Katata-Seru, L.M.; Varma, R.S. Ionic liquids-assisted greener preparation of silver nanoparticles. Curr. Opin. Green Sustain. Chem. 2021, 33, 100581–100593. [Google Scholar] [CrossRef]
- Długosz, O.; Szostak, K.; Staroń, A.; Pulit-Prociak, J.; Banach, M. Methods for Reducing the Toxicity of Metal and Metal Oxide NPs as Biomedicine. Materials 2020, 13, 279. [Google Scholar] [CrossRef] [Green Version]
- Song, J.Y.; Kwon, E.-Y.; Kim, B.S. Antibacterial latex foams coated with biologically synthesized silver nanoparticles using Magnolia kobus leaf extract. Korean J. Chem. Eng. 2012, 29, 1771–1775. [Google Scholar] [CrossRef]
- Kahn, S.L.; Podjasek, J.O.; Dimitropoulos, V.A.; Brown, C.W. Natural rubber latex allergy. Dis.-Mon. 2016, 62, 5–17. [Google Scholar] [CrossRef]
- Katrancha, E.D.; Harshberger, L.A. Nursing students with latex allergy. Nurse Educ. Pract. 2012, 12, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Charous, B.; Tarlo, S.; Charous, M.; Kelly, K. Natural rubber latex allergy in the occupational setting. Methods 2002, 27, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Mam, K.; Dangtungee, R. Effects of silver nanoparticles on physical and antibacterial properties of natural rubber latex foam. Mater. Today Proc. 2019, 17, 1914–1920. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 2007, 9, 479–489. [Google Scholar] [CrossRef]
- Rathnayake, W.; Ismail, H.; Baharin, A.; Darsanasiri, A.; Rajapakse, S. Synthesis and characterization of nano silver based natural rubber latex foam for imparting antibacterial and anti-fungal properties. Polym. Test. 2012, 31, 586–592. [Google Scholar] [CrossRef]
- Suwatthanarak, T.; Than-Ardna, B.; Danwanichakul, D.; Danwanichakul, P. Synthesis of silver nanoparticles in skim natural rubber latex at room temperature. Mater. Lett. 2016, 168, 31–35. [Google Scholar] [CrossRef]
- Prasanseang, W.; Sriwong, C.; Choojun, K. Effect of Synthesized Ag Nanoparticles by Using the Different Amounts of Polyvinylpyrrolidone for Ag-Natural Rubber Hybrid Sheets and their Antibacterial Properties. Key Eng. Mater. 2017, 751, 270–276. [Google Scholar] [CrossRef]
- Rathnayake, I.U.; Ismail, H.; De Silva, C.R.; Darsanasiri, N.D.; Bose, I. Antibacterial effect of Ag-doped TiO2 nanoparticles incorporated natural rubber latex foam under visible light conditions. Iran. Polym. J. 2015, 24, 1057–1068. [Google Scholar] [CrossRef]
- Miranda, M.C.R.; Sato, N.C.; Brasil, G.S.P.; Piazza, R.D.; Jafelicci, M.; de Barros, N.R.; Borges, F.A.; Batagin-Neto, A.; Silva, W.D.M.; Herculano, R.D.; et al. Silver nanoparticles effect on drug release of metronidazole in natural rubber latex dressing. Polym. Bull. 2021, 79, 9957–9973. [Google Scholar] [CrossRef]
- Barboza-Filho, C.G.; Cabrera, F.C.; Dos Santos, R.J.; Saez, J.A.D.S.; Job, A.E. The influence of natural rubber/Au nanoparticle membranes on the physiology of Leishmania brasiliensis. Exp. Parasitol. 2012, 130, 152–158. [Google Scholar] [CrossRef]
- Santos, N.M.; Gomes, A.S.; Cavalcante, D.G.; Santos, L.F.; Teixeira, S.R.; Cabrera, F.C.; Job, A.E. Green synthesis of colloidal gold nanoparticles using latex from Hevea brasiliensis and evaluation of their in vitro cytotoxicity and genotoxicity. IET Nanobiotechnol. 2019, 13, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Rathnayake, W.G.I.U.; Ismail, H.; Baharin, A.; Bandara, I.M.C.C.D.; Rajapakse, S. Enhancement of the antibacterial activity of natural rubber latex foam by the incorporation of zinc oxide nanoparticles. J. Appl. Polym. Sci. 2013, 131, 1–8. [Google Scholar] [CrossRef]
- Krainoi, A.; Poomputsa, K.; Kalkornsurapranee, E.; Johns, J.; Songtipya, L.; Nip, R.L.; Nakaramontri, Y. Disinfectant natural rubber films filled with modified zinc oxide nanoparticles: Synergetic effect of mechanical and antibacterial properties. Express Polym. Lett. 2021, 15, 1081–1100. [Google Scholar] [CrossRef]
- Seon-Woo, N. Antibacterial latex foam containing nano-silver particles and method of producing the same. KR100495530B1, 16 June 2006. [Google Scholar]
Nanoparticle | Synthesis Method | Precursor Agent | Reaction Time (min) | Reaction Temperature (°C) | Average Size (nm) | Shape | Observation | Reference |
---|---|---|---|---|---|---|---|---|
AgNPs | Chemical method | AgNO3 | 30 to 120 | 80 | 65 to 85 | - | - | Danna et al. [91] |
AgNPs | Chemical method | AgNO3/NaBH4 | - | - | 10 to 20 | Sphere | NPs concentration in NRL 0.4% | Marques et al. [92] |
AgNPs | Physical method | AgNO3/NaBH4 | 20 | - | 4 to 10 | Sphere and aggregates | UV power light 250 W | Bakar et al. [95] |
AgNPs | Green synthesis | AgNO3 | 60 | 100 | 2 to 100 | Sphere and aggregates | 50 to 400 μL of NRL were tested | Guidelli et al. [94] |
AgNPs | Chemical method | AgNO3/NaBH4 | 5 | 40 | 30 | Sphere and aggregates | - | Guidelli et al. [98] |
Fe3O4NPs | Chemical method | FeCl3·6 H2O FeCl2·4 H2O | 60 | 90 | 12 | Sphere | - | Arsalani et al. [77] |
Fe3O4NPs | Green synthesis | FeCl3·6 H2O FeCl2·4 H2O | 70 | 90 | 7.9 to 13 | Sphere | 100 to 800 μL of NRL were tested | Arsalani et al. [77] |
Disadvantages | Consequence/Examples |
---|---|
Cytotoxicity | There are concerns about the cytotoxic effect of metallic NPs, as the mechanism of interaction of NPs with cells is still not fully understood [102]. This may occur because there is a large variation in the parameters in relation to NPs, such as their size, shape, and surface charge [103,104]. Extended exposure to AgNPs through oral and inhalation can lead to Argyria or Argyrosis, i.e., chronic disorders of skin microvessels and eyes in humans. In vitro cell culture studies have indicated the toxic effects of AgNPs in immortal human skin keratinocytes, human erythrocytes, human neuroblastoma cells, human embryonic kidney cells, human liver cells, and human colon cells. In vivo animal studies have revealed the toxic effects of AgNPs in rodents by accumulating in their liver, spleen, and lung [46]. |
Interactions for different cell lineages | Different cell lineages exhibit distinct cytotoxic responses. Vero cells (African green monkey renal epithelial cells), for example, have been shown to be more susceptible to chitosan/pectin/AuNPs hydrogel than LLCMK2 cells (Macaca mulatta renal epithelial cells) [105]. We can also mention the case of the hydrogel dressing containing AgNPs, which exhibited a different level of toxicity in relation to immortal keratinocytes and primary keratinocytes [106]. Therefore, there is a certain challenge when choosing a cell line that is more suitable for biocompatibility testing in the study of a material containing NPs [103]. |
Migration of NPs to undesirable sites | NPs cannot only be directly absorbed by the cells of exposed organs, but they can also be translocated to other organs, causing unwanted toxicity or other adverse effects [107]. The NPs leaching depends on the hydrodynamic conditions at the implantation site [108]. The material safety assessment should be extensively conducted in adjacent tissues and organs, and not limited to the site where the artifact will be implanted [103]. |
Resistance to NPs by bacteria | Bacteria such as Bacillus subtilis have the ability to adapt to cellular oxidative stress produced by Ag(I) [109]. Bacteria can develop a resistance to AgNPs after a repeated exposure, and resistance evolves without any genetic change. Only phenotypic change is needed to reduce the stability of NPs and thus eliminate the antibacterial activity of AgNPs [110,111]. |
Nanoparticle aggregation process | NPs tend to aggregate or flocculate and are not stable in aqueous solutions [112]. Aggregation affects the stability of NPs and limits their use as drug carriers. Particle collisions due to Brownian motion leads to aggregation and precipitation. Therefore, it is vital to obtain NPs that are well dispersed and stable in the solution phase (mainly in phosphate-buffered saline). A possible solution is to increase the repulsion between NPs, which increases their colloidal dispersion. However, in the case of NPs used in biomedical therapies, chemical stability in the biological environment is hard to obtain. For example, acidic conditions found in cancer cells can cause the aggregation of many NPs [113]. |
Pollution of riverbeds | The extensive application and production of AgNPs can increase their release in aquatic environments such as rivers and lakes. For example, AgNPs can be released from antimicrobial fabrics into water during washing, thereby polluting groundwater. Once AgNPs enter the freshwater environment, they generally oxidize to Ag(I) ions that are toxic to aquatic organisms. Furthermore, ionic silver can stabilize into sparingly soluble salts. By accumulating in aquatic organisms, AgNPs can enter the human body through the food chain [46]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra, N.B.; Bortoluz, J.; Bystronski, A.R.; Maddalozzo, A.E.D.; Restelatto, D.; Roesch-Ely, M.; Devine, D.M.; Giovanela, M.; Crespo, J.S. Recent Progress on Natural Rubber-Based Materials Containing Metallic and Metal Oxide Nanoparticles: State of the Art and Biomedical Applications. Compounds 2023, 3, 310-333. https://doi.org/10.3390/compounds3020023
Guerra NB, Bortoluz J, Bystronski AR, Maddalozzo AED, Restelatto D, Roesch-Ely M, Devine DM, Giovanela M, Crespo JS. Recent Progress on Natural Rubber-Based Materials Containing Metallic and Metal Oxide Nanoparticles: State of the Art and Biomedical Applications. Compounds. 2023; 3(2):310-333. https://doi.org/10.3390/compounds3020023
Chicago/Turabian StyleGuerra, Nayrim B., Jordana Bortoluz, Andressa R. Bystronski, Ana Elisa D. Maddalozzo, Danielle Restelatto, Mariana Roesch-Ely, Declan M. Devine, Marcelo Giovanela, and Janaina S. Crespo. 2023. "Recent Progress on Natural Rubber-Based Materials Containing Metallic and Metal Oxide Nanoparticles: State of the Art and Biomedical Applications" Compounds 3, no. 2: 310-333. https://doi.org/10.3390/compounds3020023
APA StyleGuerra, N. B., Bortoluz, J., Bystronski, A. R., Maddalozzo, A. E. D., Restelatto, D., Roesch-Ely, M., Devine, D. M., Giovanela, M., & Crespo, J. S. (2023). Recent Progress on Natural Rubber-Based Materials Containing Metallic and Metal Oxide Nanoparticles: State of the Art and Biomedical Applications. Compounds, 3(2), 310-333. https://doi.org/10.3390/compounds3020023