Category Theory in Chemistry
Conflicts of Interest
References
- Restrepo, G.; Villaveces, J. Mathematical Thinking in Chemistry. HYLE Int. J. Philos. Chem. 2012, 18, 3–22. [Google Scholar]
- Matsuzawa, J. Symmetry and Group Theory. Kobunshi 2008, 57, 66–70. [Google Scholar] [CrossRef]
- Matsushita, Y.; Dotera, T. Symmetry in Polymers-Tricontinuous Cubic and Tiling Structures. Kobunshi 2008, 57, 71–75. [Google Scholar] [CrossRef]
- King, R.B. Negative Curvature Surface in Chemical Structures. J. Chem. Inf. Comput. Sci. 1998, 38, 180–188. [Google Scholar] [CrossRef]
- Tezuka, Y. Topological Polymer Chemistry: An Insight with Poincare into Nonlinear Macromolecular Constructions. Kobunshi 2008, 57, 81–85. [Google Scholar] [CrossRef]
- Rouvray, D.H. Predicting Chemistry from Topology. Sci. Am. 1986, 255, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Bartholomay, A.F. Molecular set theory: A mathematical representation for chemical reaction mechanisms. Bull. Math. Phys. 1960, 22, 285–307. [Google Scholar] [CrossRef]
- Rouvray, D.H. Chemistry and Logical Structures. 2. The Role of Set Theory. Int. J. Math. Educ. Sci. Technol. 1974, 5, 173–789. [Google Scholar] [CrossRef]
- Maggiora, G.; Vogt, M. Set-Theoretic Formalism for Treating Ligand-Target Datasets. Molecules 2021, 26, 7419. [Google Scholar] [CrossRef] [PubMed]
- Baez, J.; Cho, S.; Cicala, D.; Otter, N.; de Paiva, V. Applied Category Theory in Chemistry, Computing, and Social Networks. Not. Am. Math. Soc. 2022, 69, 292–297. [Google Scholar] [CrossRef]
- Masavetas, K.A.; Roumpani-Kalantzopoulou, F. Categories and functors which characterize chemical reactions, their kinetics and mechanism. Math. Comput. Model. 1998, 10, 731–738. [Google Scholar] [CrossRef]
- Hirono, Y.; Okada, T.; Miyazaki, H.; Hidaka, Y. Structural reduction of chemical reaction networks based on topology. Phys. Rev. Res. 2021, 3, 043123. [Google Scholar] [CrossRef]
- Giesa, T.; Spivak, D.I.; Buehler, M.J. Category Theory Based Solution for the Building Block Replacement Problem in Materials Design. Adv. Eng. Mater. 2012, 14, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.L.; Flamm, C.; Merkle, D.; Stadler, P.F. Inferring chemical reaction patterns using rule composition in graph grammars. J. Syst. Chem. 2013, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Spivak, D.I.; Kent, R.E. Ologs: A Categorical Framework for Knowledge Representation. PLoS ONE 2012, 7, e24274. [Google Scholar] [CrossRef]
- Andersen, J.L.; Flamm, C.; Merkle, D.; Stadler, P.F. Rule Composition in Graph Transformation Models of Chemical Reactions. MATCH Commun. Math. Comput. Chem. 2018, 80, 661–704. [Google Scholar]
- Andersen, L.J.; Flamm, C.; Merkle, D.; Stadler, P.F. An intermediate level of abstraction for computational systems chemistry. Phylos. Trans. A 2017, 375, 20160354. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akitsu, T. Category Theory in Chemistry. Compounds 2023, 3, 334-335. https://doi.org/10.3390/compounds3020024
Akitsu T. Category Theory in Chemistry. Compounds. 2023; 3(2):334-335. https://doi.org/10.3390/compounds3020024
Chicago/Turabian StyleAkitsu, Takashiro. 2023. "Category Theory in Chemistry" Compounds 3, no. 2: 334-335. https://doi.org/10.3390/compounds3020024
APA StyleAkitsu, T. (2023). Category Theory in Chemistry. Compounds, 3(2), 334-335. https://doi.org/10.3390/compounds3020024