Morphology-Controlled Polyaniline Nanofibers via Rapid Polymerization for Enhanced Supercapacitor Performance
Abstract
1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation of PANI NFs
2.3. Preparation of Electrodes
2.4. Fabrication of Symmetric SCs
2.5. Structural and Morphological Characterizations
2.6. Electrochemical Characterizations
3. Results and Discussion
3.1. Structural and Morphological Study
3.2. Electrochemical Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, J.; Xi, S.; Sun, Y.; Dong, W.; Asiri, Y.M.; Alqarni, N.D.; Helal, M.H.; Zhou, F.; Zhu, J. Size effect of nanomagnetite on magnetoresistance of core-shell structured polyaniline nanocomposites. Adv. Compos. Hybrid Mater. 2024, 7, 62. [Google Scholar] [CrossRef]
- Kamarudin, S.; Rani, M.S.A.; Mohammad, M.; Mohammed, N.H.; Su’ait, M.S.; Ibrahim, M.A.; Asim, N.; Razali, H. Investigation on size and conductivity of polyaniline nanofiber synthesised by surfactant-free polymerization. J. Mater. Res. Technol. 2021, 14, 255–261. [Google Scholar] [CrossRef]
- Ghanbari, S.; Pourmahdian, S. Effect of synthesis parameters on electrical conductivity and morphological characteristics of pristine PANI and polyaniline-MWCNT nanocomposites. J. Mater. Sci. Mater. Electron. 2023, 34, 1541. [Google Scholar] [CrossRef]
- Kazemi, F.; Naghib, S.; Mohammadpour, Z. Multifunctional micro-/nanoscaled structures based on polyaniline: An overview of modern emerging devices. Mater. Today Chem. 2020, 16, 100249. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, Y.; Zhang, F.; Zhang, Y.; Liu, C.; Liu, B. One stone, two birds: Polyaniline film with the difunctional characteristic of fast-response multi-color electrochromic and excellent super-capacitive behaviors. Appl. Surf. Sci. 2025, 707, 163642. [Google Scholar] [CrossRef]
- Gupta, P.K.; Jana, R.; Das, P.; Datta, A.; Malik, S. Highly stable Self-supported PdO Nanostructure on the Conductive Polyaniline Nanotube towards Extensive Electrochemical Hydrogen Evolution. J. Mater. Chem. A 2025, 13, 24685–24693. [Google Scholar] [CrossRef]
- Rajarathinam, T.; Jayaraman, S.; Subramani, D.; Aswale, S.; Lee, J.; Paik, H.J.; Kim, C.S.; Yoon, J.H.; Chang, S.C. Albumin fouling-free electrochemical sensors based on polyaniline single walled carbon nanotube composites for precise purine metabolomics. Compos. Commun. 2025, 56, 102363. [Google Scholar] [CrossRef]
- Li, M.Z.; Luo, M.; An, J.; Liu, Y. Choline electrochemical biosensor based on MWCNT-AuNPs and MWCNT-PANI composite nanomaterials. Microchem. J. 2025, 213, 113609. [Google Scholar] [CrossRef]
- Kailasa, S.; Rani, B.G.; Reddy, M.S.B.; Harish, C.M.; Rao, K.V.; Rao, T.V. Enzyme-free glucose sensor based on twisted polyaniline nanobelts decorated with copper oxide nanoparticles. Inorg. Chem. Commun. 2025, 179, 114732. [Google Scholar] [CrossRef]
- Askar, P.; Kanzhigitova, D.; Tapkharov, A.; Umbetova, K.; Duisenbekov, S.; Adilov, S.; Nuraje, N. Hydrogen sensors based on polyaniline and its hybrid materials: A mini review. Discover Nano 2025, 20, 68. [Google Scholar] [CrossRef]
- Huang, L.; Cao, S.; Liu, Y.; Chen, J.; Li, H.; Liang, Y.; Yang, T.; Zou, B. Built-In Electric Field-Assisted Polyaniline for Boosting Dual-Band Electrochromic Smart Windows with Multicolor Displays and Four-Mode Conversion. Adv. Funct. Mater. 2025, 2500064. [Google Scholar] [CrossRef]
- Xu, H.; Li, W.; Haider, I.; Zheng, Y.; Xue, M.; Ge, J.; Wang, B.; Zhuiykov, S.; Cui, Y. High-Performance Electrochromic Energy Storage Devices Based on WO3 Nanoflower Via In Situ Intercalation With Polyaniline. Adv. Mater. Technol. 2025, 10, 2500260. [Google Scholar] [CrossRef]
- Barhoi, A.; Chowdhury, A.; Bora, C.; Hussain, S. Fabrication of ternary composite of rGO/Ni-Co-S/polyaniline: A promising electrode material for high-performance supercapacitors. J. Energy Storage 2025, 133, 118033. [Google Scholar] [CrossRef]
- Yan, J.; Liu, H.; Huang, H.; Yu, X.; Wang, F.; Jia, S.; Wei, S.; Ji, J.; Li, L. Porous carbonized peanut shell/polyaniline nanofiber composite for electromagnetic wave absorption and energy storage. Appl. Surf. Sci. 2025, 713, 164313. [Google Scholar] [CrossRef]
- Jia, X.; Du, Y.; Xie, F.; Li, H.; Zhang, R.; Niu, X.; Zhang, M. Polyaniline nanowires anchored on MXene quantum dots/graphene composite fibers with 0D-1D-2D hierarchical structure for high-performance wearable supercapacitors. J. Energy Storage 2025, 129, 117346. [Google Scholar] [CrossRef]
- Sun, M.; Wang, X.; Long, Y.; Bian, H.; Yang, W.; Dai, H. Lignin-induced assembly of polyaniline on graphene via noncovalent interactions for energy storage. Chem. Eng. J. 2025, 521, 166852. [Google Scholar] [CrossRef]
- Zahra, U.; Alotaibi, B.M.; Alyousef, H.A.; Alrowaily, A.W.; Almufleh, F.N.; Alotaibi, A.M.; Ahmad, N. Copper aluminate anchor on Polyaniline, A hydrothermally fabricated robust electrode for Pseoudocapacitors. Ceram. Int. 2025, 51, 36306–36315. [Google Scholar] [CrossRef]
- Li, N.; Kang, G.; Huang, S.; Biao, J.; Liu, Y.; Kang, F.; Cao, Y. Protonated Polyaniline-Modified Copper Current Collector for Anode-Free Lithium Metal Battery. ACS Appl. Mater. Interfaces 2025, 17, 36627–36638. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, J.; Zhang, K.; Zhou, H.; Gao, Y.; Fan, J.; Chen, R.; Wang, H.L. Carbon nanofiber/polyaniline composite aerogel with excellent electromagnetic interference shielding, low thermal conductivity, and extremely low heat release. Nano Micro Lett. 2025, 17, 80. [Google Scholar] [CrossRef]
- Sugunan, A.; Syamala, A.A.; Radhakrishnan, A.B.; Menamparambath, M.M. Liquid/liquid interface assisted in situ polymerisation of aniline on Ti3C2Tx MXene for electrochemical detection of dopamine. Nanoscale Adv. 2025, 7, 4980–4993. [Google Scholar] [CrossRef]
- Çolak, S.G.; Güngör, A.; Çolak, M.Ö.A.; Simsek, U.B.; Genc, R.; Erdem, E. Exploring PANI/CBTS Nanofiber Composites as Supercapacitor Electrodes: Structure-Performance Correlation. Adv. Sust. Sys. 2025, e00427. [Google Scholar] [CrossRef]
- Xing, Y.; Wei, M.; Wang, Y.; Sun, Y.; Zhang, M.; Deng, K. Preparation of ordered polyaniline by interfacial polymerization and application in Zn2+ hybrid supercapacitor. Chem. Eng. J. 2025, 521, 166437. [Google Scholar] [CrossRef]
- Rahman, S.U.; Dan, X.; Farooq, S.; Sajid, M.; Tao, F.Y.; Kitchamsetti, N.; Liu, C.; Xu, W.J.; Zhang, J.P. Tailoring polyaniline with dual dopant engineering as a high efficiency cathode material for aqueous zinc ion batteries. J. Colloid Interface Sci. 2025, 700, 138600. [Google Scholar] [CrossRef]
- Rahman, S.; Röse, P.; Shah, A.H.A.; Krewer, U.; Bilal, S. An amazingly simple, fast and green synthesis route to polyaniline nanofibers for efficient energy storage. Polymers 2020, 12, 2212. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Mannem, C.K.; Chakra, C.S.; de Barros, A.L.F. A review of the exploration of nanostructured electrode materials, electrolytes, and performance in metal-ion (Li, Na, K, and Zn) hybrid capacitors. J. Energy Storage 2025, 106, 114836. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Mannem, C.K. A review on preparation of metal tellurides and their utilization as an electrode for supercapacitors, rechargeable batteries and electrocatalysis. J. Alloys Compd. 2025, 1027, 180664. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Kim, D. A facile method for synthesizing MOF derived ZnCo2O4 particles on MXene nanosheets as a novel anode material for high performance hybrid supercapacitors. Electrochim. Acta 2023, 441, 141824. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Kim, D. High performance hybrid supercapacitor based on hierarchical MOF derived CoFe2O4 and NiMn2O4 composite for efficient energy storage. J. Alloys Compd. 2023, 959, 170483. [Google Scholar] [CrossRef]
- Ingle, R.V.; Shaikh, S.F.; Bhujbal, P.K.; Pathan, H.M.; Tabhane, V.A. Polyaniline doped with protonic acids: Optical and morphological studies. ES Mater. Manuf. 2020, 8, 54–59. [Google Scholar] [CrossRef]
- He, D.; Zeng, C.; Xu, C.; Cheng, N.; Li, H.; Mu, S.; Pan, M. Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir 2011, 27, 5582–5588. [Google Scholar] [CrossRef]
- Dong, J.; Wang, Y.; Zhou, Y.; Du, H.; Li, Y.; Qin, Z. Well-organized polyaniline nanorod arrays on graphene oxide sheets constructed under flowing condition for flexible stable high-rate supercapacitors. J. Solid State Electrochem. 2025, 1–13. [Google Scholar] [CrossRef]
- Rafiq, S.; Lovely, M.A.; Mim, S.R.; Islam, M.S.; Hasan, M.; Billah, M.M. Structure controlled enhanced photocatalytic activity of polyaniline (PANI). Heliyon 2025, 11, e42888. [Google Scholar] [CrossRef]
- Raza, S.; Bashir, T.; Chen, C.; Yu, W.; Ahmad, M.T.; Wu, X.; Hameed, M.U.; Shen, L.; Lin, H.; Orooji, Y. Self-assembled in-situ growth of polyaniline on MXene composite with sodium alginate hydrogel 3D framework for enhanced LIBs performance. Int. J. Biol. Macromol. 2025, 320, 145812. [Google Scholar] [CrossRef] [PubMed]
- Si, X.; Zhang, Q.; Guo, X.; Yang, J.; Zhao, T.; Zhang, Y. Bioinspired chestnut burr-like polyaniline: Achieving superhydrophobicity and excellent microwave transparency through controlled polymerization. ACS Appl. Mater. Interfaces 2025, 17, 9867–9878. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Nautiyal, A.; Du, H.; Wei, Z.; Zhang, X.; Wang, R. Electropolymerization of polyaniline as high-performance binder free electrodes for flexible supercapacitor. Electrochim. Acta 2021, 376, 138037. [Google Scholar] [CrossRef]
- Ma, G.; Zhou, X.; Cao, Y.; Guan, X.; Wu, W.; Zhang, S.; Li, C.; Kong, Z.; Wang, S. Sulfonated polyaniline coated Prussian blue analog derived Mn-Fe oxide composite electrode for all-solid-state flexible supercapacitors. Chem. Eng. J. 2025, 508, 160942. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Kuila, T.; Balamurugan, J.; Nguyen, T.T.; Kim, N.H.; Lee, J.H. Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application. Chem. Eng. J. 2017, 308, 1174–1184. [Google Scholar] [CrossRef]
- Abdiryim, T.; Gang, Z.X.; Jamal, R. Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Mater. Chem. Phy. 2005, 90, 367–372. [Google Scholar] [CrossRef]
- Du, X.S.; Zhou, C.F.; Mai, Y.W. Facile synthesis of hierarchical polyaniline nanostructures with dendritic nanofibers as scaffolds. J. Phy. Chem. C 2008, 112, 19836–19840. [Google Scholar] [CrossRef]
- Hao, Y.; Sani, L.A.; Ge, T.; Fang, Q. Phytic acid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel. Appl. Surf. Sci. 2017, 419, 826–837. [Google Scholar] [CrossRef]
- Hu, C.; Li, T.; Yin, H.; Hu, L.; Tang, J.; Ren, K. Preparation and corrosion protection of three different acids doped polyaniline/epoxy resin composite coatings on carbon steel. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 126069. [Google Scholar] [CrossRef]
- Im, S.; Kim, H.J.; Shin, K.; Jeong, H.Y.; Hong, W.G.; Kwon, K.; Hong, Y.J. Phytic acid-doped cross-linked polyaniline nanofibers for electrochemical supercapacitor electrode applications. J. Korean Phy. Soc. 2019, 74, 145–153. [Google Scholar] [CrossRef]
- Alshammari, A.S.; Puri, N.; Chaudhary, S. Graphene oxide/polyaniline nanocomposite as an electrode material for supercapacitor applications. J. Mater. Sci. Mater. Electron. 2023, 34, 1861. [Google Scholar] [CrossRef]
- Rahman, S.; Röse, P.; Surati, M.; Shah, A.H.A.; Krewer, U.; Bilal, S. 3D polyaniline nanofibers anchored on carbon paper for high-performance and light-weight supercapacitors. Polymers 2020, 12, 2705. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Chu, Q.; Wang, Z.; Zhang, F.; Wang, S. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J. Power Sources 2009, 190, 578–586. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, Q.; Wang, Y.; Qin, Z. Restricted growth of polyaniline nanofiber arrays between holey graphene sheets on carbon cloth towards improved charge storage capacity. J. Energy Storage 2025, 106, 114857. [Google Scholar] [CrossRef]
- Puniyanikkottil, M.A.; Mal, S.S. Polyoxometalate Integrated with Conducting Polymer Nanocomposites for Supercapacitor and Biological Sensor Applications. Inorg. Chem. 2025, 64, 8222–8237. [Google Scholar] [CrossRef]
- Wang, P.H.; Wang, T.L.; Lin, W.C.; Lin, H.Y.; Lee, M.H.; Yang, C.H. Enhanced supercapacitor performance using electropolymerization of self-doped polyaniline on carbon film. Nanomaterials 2018, 8, 214. [Google Scholar] [CrossRef] [PubMed]
- Kitchamsetti, N.; Kim, D. Facile synthesis of hierarchical core-shell heterostructured ZnO/SnO2@NiCo2O4 nanorod sheet arrays on carbon cloth for high performance quasi-solid-state asymmetric supercapacitors. J. Mater. Res. Technol. 2022, 21, 590–603. [Google Scholar] [CrossRef]
Scan Rate (mV s−1) | Csp (F g−1) of PANI-A | Csp (F g−1) of PANI-B |
---|---|---|
20 50 100 | 600.30 580.00 551.70 | 462.50 420.00 375.00 |
150 | 481.60 | 343.33 |
Current Density (A g−1) | Csp (F g−1) of PANI-A | Csp (F g−1) of PANI-B |
---|---|---|
1 3 5 | 378.80 361.10 350.55 | 342.90 324.50 302.75 |
10 | 344.00 | 271.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, S.U.; Farooq, S.; Kitchamsetti, N.; Sajid, M.; Gul, S.; Farooq, F.; Rafiq, M.; Fatima, I.; Razzaq, H. Morphology-Controlled Polyaniline Nanofibers via Rapid Polymerization for Enhanced Supercapacitor Performance. Nanoenergy Adv. 2025, 5, 11. https://doi.org/10.3390/nanoenergyadv5030011
Rahman SU, Farooq S, Kitchamsetti N, Sajid M, Gul S, Farooq F, Rafiq M, Fatima I, Razzaq H. Morphology-Controlled Polyaniline Nanofibers via Rapid Polymerization for Enhanced Supercapacitor Performance. Nanoenergy Advances. 2025; 5(3):11. https://doi.org/10.3390/nanoenergyadv5030011
Chicago/Turabian StyleRahman, Sami Ur, Shehna Farooq, Narasimharao Kitchamsetti, Muhammad Sajid, Salma Gul, Fahad Farooq, Muhammad Rafiq, Irum Fatima, and Humaira Razzaq. 2025. "Morphology-Controlled Polyaniline Nanofibers via Rapid Polymerization for Enhanced Supercapacitor Performance" Nanoenergy Advances 5, no. 3: 11. https://doi.org/10.3390/nanoenergyadv5030011
APA StyleRahman, S. U., Farooq, S., Kitchamsetti, N., Sajid, M., Gul, S., Farooq, F., Rafiq, M., Fatima, I., & Razzaq, H. (2025). Morphology-Controlled Polyaniline Nanofibers via Rapid Polymerization for Enhanced Supercapacitor Performance. Nanoenergy Advances, 5(3), 11. https://doi.org/10.3390/nanoenergyadv5030011