Gender Comparisons and Associations between Lower Limb Muscle Activation Strategies and Resultant Knee Biomechanics during Single Leg Drop Landings
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- Increased pre-activation of the semitendinosus rather than decrease vastus lateralis may decrease proximal tibia anterior shear force.
- Higher proximal tibia anterior shear force may be related to a higher risk of ACL injury in females.
- Knee flexion angle appears not to show gender-specific differences during single leg drop landing tasks.
- Vertical rather than posterior ground reaction force may be related to proximal tibia anterior shear force in drop landing tasks.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Renström, P.A. Eight clinical conundrums relating to anterior cruciate ligament (ACL) injury in sport: Recent evidence and a personal reflection. Br. J. Sports Med. 2013, 47, 367–372. [Google Scholar] [CrossRef]
- Toale, J.P.; Hurley, E.T.; Hughes, A.J.; Withers, D.; King, E.; Jackson, M.; Moran, R. The majority of athletes fail to return to play following anterior cruciate ligament reconstruction due to reasons other than the operated knee. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3877–3882. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-J.; Zeng, N.; Yan, Z.-P.; Li, J.-T.; Ni, G.-X. Post-traumatic osteoarthritis following ACL injury. Arthritis Res. Ther. 2020, 22, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Myer, G.D.; Ford, K.; Paterno, M.V.; Quatman, C.E. Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools. J. Orthop. Res. 2016, 34, 1843–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanley, L.E.; Kerr, Z.Y.; Dompier, T.P.; Padua, D.A. Sex differences in the incidence of anterior cruciate ligament, medial collateral ligament, and meniscal injuries in collegiate and high school sports: 2009–2010 through 2013–2014. Am. J. Sports Med. 2016, 44, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.M.; Slauterbeck, J.L. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Fleming, B.C.; Renstrom, P.A.; Beynnon, B.D.; Engstrom, B.; Peura, G.D.; Badger, G.J.; Johnson, R.J. The effect of weightbearing and external loading on anterior cruciate ligament strain. J. Biomech. 2001, 34, 163–170. [Google Scholar] [CrossRef]
- Ball, S.; Stephen, J.M.; El-Daou, H.; Williams, A.; Amis, A.A. The medial ligaments and the ACL restrain anteromedial laxity of the knee. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 3700–3708. [Google Scholar] [CrossRef]
- Kittl, C.; El-Daou, H.; Athwal, K.K.; Gupte, C.M.; Weiler, A.; Williams, A.; Amis, A.A. The Role of the Anterolateral Structures and the ACL in Controlling Laxity of the Intact and ACL-Deficient Knee. Am. J. Sports Med. 2016, 44, 345–354. [Google Scholar] [CrossRef]
- Lucarno, S.; Zago, M.; Buckthorpe, M.; Grassi, A.; Tosarelli, F.; Smith, R.; Della Villa, F. Systematic Video Analysis of Anterior Cruciate Ligament Injuries in Professional Female Soccer Players. Am. J. Sports Med. 2021, 49, 1794–1802. [Google Scholar] [CrossRef]
- Schmitz, R.J.; Kulas, A.S.; Perrin, D.H.; Riemann, B.L.; Shultz, S.J. Sex differences in lower extremity biomechanics during single leg landings. Clin. Biomech. 2007, 22, 681–688. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Gu, Y. Single leg landing movement differences between male and female badminton players after overhead stroke in the backhand-side court. Hum. Mov. Sci. 2019, 66, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Weinhandl, J.T.; Irmischer, B.S.; Sievert, Z.A. Sex differences in unilateral landing mechanics from absolute and relative heights. Knee 2015, 22, 298–303. [Google Scholar] [CrossRef]
- Ali, N.; Rouhi, G.; Robertson, G. Gender, Vertical Height and Horizontal Distance Effects on Single-Leg Landing Kinematics: Implications for Risk of non-contact ACL Injury. J. Hum. Kinet. 2013, 37, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Orishimo, K.F.; Kremenic, I.; Pappas, E.; Hagins, M.; Liederbach, M. Comparison of Landing Biomechanics Between Male and Female Professional Dancers. Am. J. Sports Med. 2009, 37, 2187–2193. [Google Scholar] [CrossRef]
- Sinclair, J.; Brooks, D.; Stainton, P. Sex differences in ACL loading and strain during typical athletic movements: A musculoskeletal simulation analysis. Eur. J. Appl. Physiol. 2019, 119, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Bencke, J.; Aagaard, P.; Zebis, M.K. Muscle Activation During ACL Injury Risk Movements in Young Female Athletes: A Narrative Review. Front. Physiol. 2018, 9, 445. [Google Scholar] [CrossRef] [Green Version]
- Englander, Z.A.; Cutcliffe, H.C.; Utturkar, G.M.; Taylor, K.A.; Spritzer, C.E.; Garrett, W.E.; DeFrate, L.E. In vivo assessment of the interaction of patellar tendon tibial shaft angle and anterior cruciate ligament elongation during flexion. J. Biomech. 2019, 90, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Zebis, M.K.; Andersen, L.L.; Brandt, M.D.; Myklebust, G.; Bencke, J.; Lauridsen, H.B.; Bandholm, T.; Thorborg, K.; Hölmich, P.; Aagaard, P. Effects of evidence-based prevention training on neuromuscular and biomechanical risk factors for ACL injury in adolescent female athletes: A randomised controlled trial. Br. J. Sports Med. 2016, 50, 552–557. [Google Scholar] [CrossRef]
- Zebis, M.K.; Andersen, L.L.; Bencke, J.; Kjaer, M.; Aagaard, P. Identification of athletes at future risk of anterior cruciate ligament ruptures by neuromuscular screening. Am. J. Sports Med. 2009, 37, 1967–1973. [Google Scholar] [CrossRef]
- Li, G.; Rudy, T.; Sakane, M.; Kanamori, A.; Ma, C.; Woo, S.-Y. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J. Biomech. 1999, 32, 395–400. [Google Scholar] [CrossRef]
- Koga, H.; Nakamae, A.; Krosshaug, T. Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 2010, 38, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- Krosshaug, T.; Nakamae, A.; Bahr, R.; Engebretsen, L.; Smith, G.; Slauterbeck, J.R.; Hewett, T.E. Mechanisms of anterior cruciate ligament injury in basketball: Video analysis of 39 cases. Am. J. Sports Med. 2007, 35, 359–367. [Google Scholar] [CrossRef]
- Dyhre-Poulsen, P.; Krogsgaard, M.R. Krogsgaard, Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J. Appl. Physiol. 2000, 89, 2191–2195. [Google Scholar] [CrossRef] [PubMed]
- Markström, J.L.; Grip, H.; Schelin, L.; Häger, C.K. Dynamic knee control and movement strategies in athletes and non-athletes in side hops: Implications for knee injury. Scand. J. Med. Sci. Sports 2019, 29, 1181–1189. [Google Scholar] [CrossRef]
- Sell, T.C.; Ferris, C.M.; Abt, J.P.; Tsai, Y.-S.; Myers, J.B.; Fu, F.H.; Lephart, S.M. Predictors of proximal tibia anterior shear force during a vertical stop-jump. J. Orthop. Res. 2007, 25, 1589–1597. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Stegeman, D.; Hermens, H. Standards for surface electromyography: The European project Surface EMG for non-invasive assessment of muscles (SENIAM). Enschede Roessingh Res. Dev. 2007, 10, 108–112. [Google Scholar]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E.; Gainey, J.; Gorton, G.; Cochran, G.V.B. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthop. Res. 1989, 7, 849–860. [Google Scholar] [CrossRef]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Li, G.; Kawamura, K.; Barrance, P.; Chao, E.Y.S.; Kaufman, K. Prediction of muscle recruitment and its effect on joint reaction forces during knee exercises. Ann. Biomed. Eng. 1998, 26, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, P.R.; Komi, P.V. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 42, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, J.T.; Bell, D.R.; Norcross, M.F.; Hudson, J.D.; Engstrom, L.A. Comparison of hamstring neuromechanical properties between healthy males and females and the influence of musculotendinous stiffness. J. Electromyogr. Kinesiol. 2009, 19, e362–e369. [Google Scholar] [CrossRef] [PubMed]
- Tirosh, O.; Sparrow, W. Identifying heel contact and toe-off using forceplate thresholds with a range of digital-filter cutoff frequencies. J. Appl. Biomech. 2003, 19, 178–184. [Google Scholar] [CrossRef]
- Hedges, L.V. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Fain, A.C.; Lobb, N.J.; Seymore, K.D.; Brown, T.N. Sex and limb differences during a single-leg cut with body borne load. Gait Posture 2019, 74, 7–13. [Google Scholar] [CrossRef]
- Sell, T.C.; Akins, J.S.; Opp, A.R.; Lephart, S.M. Relationship between tibial acceleration and proximal anterior tibia shear force across increasing jump distance. J. Appl. Biomech. 2014, 30, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Gheidi, N.; Sadeghi, H.; Talebian, S.; Farhad, M.; Ghoshe, T.; Kernozek, T.W. Kinematics and kinetics predictor of proximal tibia anterior shear force during single leg drop landing. Phys. Treat. Specif. Phys. Ther. J. 2014, 4, 102–108. [Google Scholar]
- Chappell, J.D.; Creighton, R.A.; Giuliani, C.A.; Yu, B. Kinematics and electromyography of landing preparation in vertical stop-jump: Risks for noncontact anterior cruciate ligament injury. Am. J. Sports Med. 2007, 35, 235–241. [Google Scholar] [CrossRef]
- Shultz, S.J.; Nguyen, A.-D.; Leonard, M.D.; Schmitz, R.J. Thigh strength and activation as predictors of knee biomechanics during a drop jump task. Med. Sci. Sports Exerc. 2009, 41, 857–866. [Google Scholar] [CrossRef] [Green Version]
- Letafatkar, A.; Rajabi, R.; Tekamejani, E.E.; Minoonejad, H. Effects of perturbation training on knee flexion angle and quadriceps to hamstring cocontraction of female athletes with quadriceps dominance deficit: Pre–post intervention study. Knee 2015, 22, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Nagano, Y.; Ida, H.; Akai, M.; Fukubayashi, T. Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: Pre-post intervention study. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2011, 3, 14–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zebis, M.K.; Bencke, J.; Andersen, L.L.; Døssing, S.; Alkjær, T.; Magnusson, S.P.; Kjær, M.; Aagaard, P. The effects of neuromuscular training on knee joint motor control during sidecutting in female elite soccer and handball players. Clin. J. Sport Med. 2008, 18, 329–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behm, D.G. Force maintenance with submaximal fatiguing contractions. Can. J. Appl. Physiol. 2004, 29, 274–290. [Google Scholar] [CrossRef] [PubMed]
- Fauth, M.L.; Petushek, E.J.; Feldmann, C.R.; Hsu, B.E.; Garceau, L.R.; Lutsch, B.N.; Ebben, W.P. Reliability of surface electromyography during maximal voluntary isometric contractions, jump landings, and cutting. J. Strength Cond. Res. 2010, 24, 1131–1137. [Google Scholar] [CrossRef] [Green Version]
- Kellis, E.; Konstantinidou, A.; Ellinoudis, A. Muscle Length of the Hamstrings Using Ultrasonography Versus Musculoskeletal Modelling. J. Funct. Morphol. Kinesiol. 2021, 6, 26. [Google Scholar] [CrossRef]
- Mohamed, O.; Perry, J.; Hislop, H. Relationship between wire EMG activity, muscle length, and torque of the hamstrings. Clin. Biomech. 2002, 17, 569–579. [Google Scholar] [CrossRef]
- Uhorchak, J.M.; Scoville, C.R.; Williams, G.N.; Arciero, R.A.; Pierre, P.S.; Taylor, D.C. Risk factors associated with noncontact injury of the anterior cruciate ligament: A prospective four-year evaluation of 859 West Point cadets. Am. J. Sports Med. 2003, 31, 831–842. [Google Scholar] [CrossRef]
- Nunley, R.M.; Wright, D.; Renner, J.B.; Yu, B.; Garrett, W.E. Gender comparison of patellar tendon tibial shaft angle with weight bearing. Res. Sports Med. 2003, 11, 173–185. [Google Scholar] [CrossRef]
- Beynnon, B.D.; Hall, J.S.; Sturnick, D.R.; DeSarno, M.J.; Gardner-Morse, M.; Tourville, T.W.; Smith, H.C.; Slauterbeck, J.R.; Shultz, S.J.; Johnson, R.J.; et al. Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: A prospective cohort study with a nested, matched case-control analysis. Am. J. Sports Med. 2014, 42, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Leppänen, M.; Pasanen, K.; Kujala, U.; Vasankari, T.; Kannus, P.; Äyrämö, S.; Krosshaug, T.; Bahr, R.; Avela, J.; Perttunen, J.; et al. Stiff Landings Are Associated With Increased ACL Injury Risk in Young Female Basketball and Floorball Players. Am. J. Sports Med. 2017, 45, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Navacchia, A.; Ueno, R.; Ford, K.R.; DiCesare, C.A.; Myer, G.D.; Hewett, T.E. EMG-Informed musculoskeletal modeling to estimate realistic knee anterior shear force during drop vertical jump in female athletes. Ann. Biomed. Eng. 2019, 47, 2416–2430. [Google Scholar] [CrossRef]
- Criss, C.R.; Melton, M.S.; Ulloa, S.A.; Simon, J.E.; Clark, B.C.; France, C.R.; Grooms, D.R. Rupture, reconstruction, and rehabilitation: A multi-disciplinary review of mechanisms for central nervous system adaptations following anterior cruciate ligament injury. Knee 2021, 30, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, J.; Hirohata, K.; Ohji, S.; Ohmi, T.; Yagishita, K. Limb-dominance and gender differences in the ground reaction force during single-leg lateral jump-landings. J. Phys. Ther. Sci. 2018, 30, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Peebles, A.T.; Dickerson, L.C.; Renner, K.E.; Queen, R.M. Sex-based differences in landing mechanics vary between the drop vertical jump and stop jump. J. Biomech. 2020, 105, 109818. [Google Scholar] [CrossRef]
- Niu, W.; Feng, T.; Wang, L.; Jiang, C.; Zhang, M. Effects of prophylactic ankle supports on vertical ground reaction force during landing: A meta-analysis. J. Sports Sci. Med. 2016, 15, 1–10. [Google Scholar]
- Paillard, T.; Noé, F. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects. Biomed. Res. Int. 2015, 2015, 891390. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Garrett, W.E. Mechanisms of non-contact ACL injuries. Br. J. Sports Med. 2007, 41 (Suppl. 1), i47. [Google Scholar] [CrossRef] [Green Version]
- Ben Mansour, G.; Kacem, A.; Ishak, M.; Grélot, L.; Ftaiti, F. The effect of body composition on strength and power in male and female students. BMC Sports Sci. Med. Rehabil. 2021, 13, 150. [Google Scholar] [CrossRef]
- Miller, A.E.J.; MacDougall, J.D.; Tarnopolsky, M.A.; Sale, D.G. Gender differences in strength and muscle fiber characteristics. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Costley, L.; Wallace, E.; Johnston, M.; Kennedy, R. Reliability of bounce drop jump parameters within elite male rugby players. J. Sports Med. Phys. Fit. 2018, 58, 1390–1397. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.; Lake, J.; Stratford, C.; Comfort, P. A Proposed Method for Evaluating Drop Jump Performance with One Force Platform. Biomechanics 2021, 1, 178–189. [Google Scholar] [CrossRef]
Variables | Total (n = 38) | Male (n = 18) | Female (n = 20) | p Value | g |
---|---|---|---|---|---|
Peak posterior GRF (N/kg) | 6.89 ± 1.34 | 6.50 ± 1.11 | 7.24 ± 1.46 | 0.09 | 0.57 |
Peak vertical GRF (N/kg) | 44.75 ± 8.11 | 39.88 ± 5.69 | 49.12 ± 7.53 | <0.001 * | 1.37 |
Peak knee anterior reaction force (N/kg) | 0.20 ± 0.05 | 0.17 ± 0.05 | 0.23 ± 0.04 | <0.001 * | 1.33 |
Peak knee flexion moment (N*m/kg) | 2.72 ± 0.54 | 2.61 ± 0.65 | 2.83 ± 0.42 | 0.21 | 0.41 |
Peak knee flexion angle (degrees) | 55.60 ± 10.54 | 57.76 ± 10.44 | 53.65 ± 10.51 | 0.23 | 0.39 |
Peak knee flexion angle within 100 ms after IC (degrees) | 48.00 ± 6.46 | 47.99 ± 5.97 | 48.00 ± 7.03 | 0.99 | 0.002 |
Pre-activation of the VL 100 ms before IC (%) | 33.51 ± 11.86 | 33.74 ± 12.74 | 33.31 ± 11.35 | 0.91 | 0.04 |
Pre-activation of the ST 100 ms before IC (%) | 39.28 ± 17.05 | 45.10 ± 20.05 | 34.03 ± 12.05 | 0.04 * | 0.68 |
Pre-activation of the ST:VL 100 ms before IC | 1.35 ± 0.88 | 1.54 ± 1.10 | 1.18 ± 0.61 | 0.22 | 0.41 |
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1. Peak knee anterior reaction force (N/kg) | - | −0.562 ** | −0.482 ** | 0.302 * | 0.663 ** | 0.358 * | 0.457 ** |
2. Pre-activation of the ST 100ms before IC (%) | - | 0.563 ** | −0.379 * | −0.542 ** | −0.178 | −0.588 ** | |
3. Pre-activation of the ST:VL 100ms before IC | - | −0.089 | −0.365 * | −0.142 | −0.088 | ||
4. Knee abduction angular excursion (degrees) | - | 0.528 ** | 0.053 | 0.196 | |||
5. Peak vertical GRF (N/kg) | - | 0.39 * | 0.324 * | ||||
6. Peak posterior GRF (N/kg) | - | 0.228 | |||||
7. Peak knee flexion moment (N*m/kg) | - |
Variable | B | 95%CI | β | t | p |
---|---|---|---|---|---|
Peak proximal knee flexion moment (N*m/kg) | 0.025 | [0.014, 0.036] | 0.28 | 2.367 | 0.024 |
Pre-activation of the ST:VL 100ms before IC | −0.016 | [−0.023, −0.009] | −0.287 | −2.39 | 0.023 |
Peak vertical GRF (N/kg) | 0.003 | [0.002, 0.004] | 0.468 | 3.703 | 0.001 |
Constant | 0.024 | [−0.018, 0.066] | - | 0.580 | 0.566 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Hu, G.; Williams, G.K.R.; Ma, F. Gender Comparisons and Associations between Lower Limb Muscle Activation Strategies and Resultant Knee Biomechanics during Single Leg Drop Landings. Biomechanics 2022, 2, 562-574. https://doi.org/10.3390/biomechanics2040044
Xu X, Hu G, Williams GKR, Ma F. Gender Comparisons and Associations between Lower Limb Muscle Activation Strategies and Resultant Knee Biomechanics during Single Leg Drop Landings. Biomechanics. 2022; 2(4):562-574. https://doi.org/10.3390/biomechanics2040044
Chicago/Turabian StyleXu, Xiaohan, Guojiong Hu, Genevieve K. R. Williams, and Fenghao Ma. 2022. "Gender Comparisons and Associations between Lower Limb Muscle Activation Strategies and Resultant Knee Biomechanics during Single Leg Drop Landings" Biomechanics 2, no. 4: 562-574. https://doi.org/10.3390/biomechanics2040044
APA StyleXu, X., Hu, G., Williams, G. K. R., & Ma, F. (2022). Gender Comparisons and Associations between Lower Limb Muscle Activation Strategies and Resultant Knee Biomechanics during Single Leg Drop Landings. Biomechanics, 2(4), 562-574. https://doi.org/10.3390/biomechanics2040044