Shallow foundations are widely used in both terrestrial and marine environments, supporting critical structures such as buildings, offshore wind turbines, subsea platforms, and infrastructure in coastal zones, including piers, seawalls, and coastal defense systems. Accurately determining the soil bearing capacity for shallow foundations
[...] Read more.
Shallow foundations are widely used in both terrestrial and marine environments, supporting critical structures such as buildings, offshore wind turbines, subsea platforms, and infrastructure in coastal zones, including piers, seawalls, and coastal defense systems. Accurately determining the soil bearing capacity for shallow foundations presents a significant challenge, as it necessitates considerable resources in terms of materials and testing equipment, as well as a substantial amount of time to perform the necessary evaluations. Consequently, our research was designed to approximate the forecasting of soil bearing capacity for shallow foundations using machine learning algorithms. In our research, four ensemble machine learning algorithms were employed for the prediction process, benefiting from previous experimental tests. Those four models were AdaBoost, Extreme Gradient Boosting (XGBoost), Gradient Boosting Regression Trees (GBRTs), and Light Gradient Boosting Machine (LightGBM). To enhance the model’s efficacy and identify the optimal hyperparameters, grid search was conducted in conjunction with k-fold cross-validation for each model. The models were evaluated using the R
2 value, MAE, and RMSE. After evaluation, the R
2 values were between 0.817 and 0.849, where the GBRT model predicted more accurately than other models in training, testing, and combined datasets. Moreover, variable importance was analyzed to check which parameter is more important. Foundation width was the most important parameter affecting the shallow foundation bearing capacity. The findings obtained from the refined machine learning approach were compared with the well-known empirical and modern machine learning equations. In the end, the study designed a web application that helps geotechnical engineers from all over the world determine the ultimate bearing capacity of shallow foundations.
Full article