Investigation of the Rheological Properties and Ageing Susceptibility of Bitumen Bio-Modified with Spent Coffee Grounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Bitumen
2.1.2. Spent Coffee Grounds (SCGs)
2.2. Methods
2.2.1. Conventional Properties
2.2.2. Rheological Properties
2.2.3. Ageing Protocol
2.2.4. Ageing Susceptibility
2.2.5. Correlation Statistical Analysis
3. Results and Discussion
3.1. Conventional Properties
3.2. Rheological Properties
3.2.1. Master Curves
3.2.2. Black Space Diagrams
3.2.3. Rheological Indexes
3.3. Ageing Susceptibility
3.4. Correlation Statistical Analysis
4. Conclusions
- Spent coffee grounds had a stiffening effect on bitumen, as displayed by the findings on their conventional and rheological properties.
- A spent coffee ground dosage of 5% can be incorporated into bitumen without negatively affecting its rheological integrity and its fatigue resistance.
- When a bio-modifier content of 5% is exceeded, the rheological behaviour is substantially downgraded, as deduced by the structural changes in the binders according to the master curves and the black space diagrams.
- The ageing susceptibility metrics indicated a slight improvement in the ageing behaviour after the bio-modification up to a bio-modifier content of 10%.
- Ring and ball test results are the ones that correlate the best with the rheological indexes out of all the conventional properties.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, H.; Wang, H.; Qu, X.; Varveri, A.; Gao, J.; You, Z. Towards an understanding of diffusion mechanism of bio-rejuvenators in aged asphalt binder through molecular dynamics simulation. J. Clean. Prod. 2021, 299, 126927. [Google Scholar] [CrossRef]
- Espinosa, L.V.; Vasconcelos, K.; Alvarez, A.E.; Bhasin, A.; Bernucci, L. Moisture damage susceptibility of a wood-based bio-binder for total replacement of asphalt binders. Road Mater. Pavement Des. 2023, 25, 45–55. [Google Scholar] [CrossRef]
- Fini, E.H.; Kalberer, E.W.; Shahbazi, A.; Basti, M.; You, Z.; Ozer, H.; Aurangzeb, Q. Chemical Characterization of Biobinder from Swine Manure: Sustainable Modifier for Asphalt Binder. J. Mater. Civ. Eng. 2011, 23, 1506–1513. [Google Scholar] [CrossRef]
- Lu, Z.; Sha, A.; Wang, W.; Gao, J. Studying the properties of SBS/Rice Husk Ash-Modified Asphalt binder and mixture. Adv. Mater. Sci. Eng. 2020, 2020, 4545063. [Google Scholar] [CrossRef]
- Kalampokis, S.; Manthos, E.; Konstantinidis, A.; Kakafikas, C.; Kalapouti, A. Bio-Modified Bitumen: A comparative analysis of algae influence on characteristic properties. Eng—Adv. Eng. 2024, 5, 417–432. [Google Scholar] [CrossRef]
- Zhang, R.; Ji, J.; You, Z.; Wang, H. Modification mechanism of using waste Wood–Based Bio-Oil to modify petroleum asphalt. J. Mater. Civ. Eng. 2020, 32, 04020375. [Google Scholar] [CrossRef]
- Jeffry, S.; Jaya, R.; Hassan, N.; Yaacob, H.; Mirza, J.; Drahman, S. Effects of nanocharcoal coconut-shell ash on the physical and rheological properties of bitumen. Constr. Build Mater. 2018, 158, 1–10. [Google Scholar] [CrossRef]
- Portugal, A.; Lucena, L.; Lucena, A.; Beserra Costa, D.; Patricio, J. Evaluating the rheological effect of asphalt binder modification using soybean oil. Pet. Sci. Technol. 2018, 36, 1351–1360. [Google Scholar] [CrossRef]
- Lyu, L.; Pei, J.; Hu, D.; Fini, E. Durability of rubberized asphalt binders containing waste cooking oil under thermal and ultraviolet aging. Constr. Build. Mater. 2021, 299, 124282. [Google Scholar] [CrossRef]
- Sun, Z.; Yi, J.; Huang, Y.; Feng, D.; Guo, C. Investigation of the potential application of biodiesel by-product as asphalt modifier. Road Mater. Pavement Des. 2015, 17, 737–752. [Google Scholar] [CrossRef]
- Arabani, M.; Moghaddam, Z.M. A comparative study into the effect of spent coffee powder and ash on improving the mechaical properties of bitumen. Constr. Build Mater. 2024, 449, 138319. [Google Scholar] [CrossRef]
- Zou, X.; Xie, H.; Li, J.; Jing, H.; Li, H.; Li, Z.; Wang, X. Innovative application of coffee grounds oil as an asphalt modifier: Extraction, preparation, and rheological properties. Case Stud. Constr. Mater. 2024, 21, e040212. [Google Scholar] [CrossRef]
- Xie, M.; Xu, L.; Wu, K.; Wen, Y.; Jiang, H.; Jiang, Z. Rheology and microstructure effects of waste spent coffee grounds in modifying asphalt binder. Low-Carbon Mater. Green. Constr. 2023, 1, 3. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, D.; Feng, Z. Aging Resistance and Microcharacteristics of Asphalt Modified by Biochar from Spent Coffee Grounds. J. Mater. Civ. Eng. 2024, 36, 05024008. [Google Scholar] [CrossRef]
- Podolsky, J.; Saw, B.; Elkashef, M.; Williams, R.; Cochran, E. Rheology and mix performance of rejuvenated high RAP field produced hot mix asphalt with a soybean derived rejuvenator. Road Mater. Pavement Des. 2020, 22, 1894–1907. [Google Scholar] [CrossRef]
- Elkashef, M.; Podolsky, J.; Williams, R.; Cochran, E. Introducing a soybean oil-derived material as a potential rejuvenator of asphalt through rheology, mix characterisation and Fourier Transform Infrared analysis. Road Mater. Pavement Des. 2017, 19, 1750–1770. [Google Scholar] [CrossRef]
- Pouranian, M.R.; Rahbar-Rastegar, R.; Haddock, J.E. Development of a Soybean-Based Rejuvenator for Asphalt Mixtures Containing High Reclaimed Asphalt Pavement Content. Lect. Notes Civ. Eng. 2019, 48, 264–273. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H.; Liu, C.; Ge, D.; You, Z.; Yu, M. High-temperature rheological behavior and fatigue performance of lignin modified asphalt binder. Constr. Build Mater. 2020, 230, 117063. [Google Scholar] [CrossRef]
- Hu, C.; Feng, J.; Zhou, N.; Zhu, J.; Zhang, S. Hydrochar from corn stalk used as bio-asphalt modifier: High-temperature performance improvement. Env. Res. 2021, 2021 193, 110157. [Google Scholar] [CrossRef]
- Mirhosseini, S.; Khabiri, M.; Kavussi, A.; Kamali, M. Applying surface free energy method for evaluation of moisture damage in asphalt mixtures containing date seed ash. Constr. Build Mater. 2016, 125, 408–416. [Google Scholar] [CrossRef]
- Valentin, J.; Trejbal, J.; Nežerka, V.; Valentová, T.; Vacková, P.; Tichá, P. A comprehensive study on adhesion between modified bituminous binders and mineral aggregates. Constr. Build Mater. 2021, 305, 124686. [Google Scholar] [CrossRef]
- Rajib, A.; Saadeh, S.; Katawal, P.; Mobasher, B.; Fini, E. Enhancing Biomass Value Chain by Utilizing Biochar as A Free Radical Scavenger to Delay Ultraviolet Aging of Bituminous Composites Used in Outdoor Construction. Resour. Conserv. Recycl. 2021, 168, 105302. [Google Scholar] [CrossRef]
- Chen, W.; Chen, S.; Zheng, C. Analysis of micromechanical properties of algae bio-based bio-asphalt-mineral interface based on molecular simulation technology. Constr. Build Mater. 2021, 306, 124888. [Google Scholar] [CrossRef]
- Grangeiro de Barros, A.; Figueirêdo Lopes Lucena, L.; García Hernandez, Á. Addition of Encapsulated Soybean Oil and Waste Cooking Oil in Asphalt Mixtures: Effects on Mechanical Properties and Self-Healing of Fatigue Damage. J. Mater. Civ. Eng. 2022, 34, 04022002. [Google Scholar] [CrossRef]
- EN 1426:2015; Bitumen and Bituminous Binders—Determination of Needle Penetration. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 1427:2015; Bitumen and Bituminous Binders—Determination of Softening Point—Ring and Ball Method. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 13398:2017; Bitumen and Bituminous Binders—Determination of the Elastic Recovery of Modified Bitumen. European Committee for Standardization: Brussels, Belgium, 2017.
- EN 13589:2008; Bitumen and Bituminous Binders—Determination of the Tensile Properties of Modified Bitumen by the Force ductility Method. European Committee for Standardization: Brussels, Belgium, 2008.
- EN 13302:2010; Bitumen and Bituminous binders—Determination of Dynamic Viscosity of Bituminous Binder Using a Rotating Spindle Apparatus. European Committee for Standardization: Brussels, Belgium, 2010.
- EN 13399:2017; Bitumen and Bituminous Binders—Determination of Storage Stability of Modified Bitumen. European Committee for Standardization: Brussels, Belgium, 2017.
- ASTM D 6373; Standard Specification for Performance grade (PG) Asphalt Binders. ASTM International: West Conshohocken, PA, USA, 2023.
- EN 12607:2014; Bitumen and Bituminous Binders—Determination of the Resistance to Hardening Under Influence of Heat and Air—Part 1: RTFOT Method. European Committee for Standardization: Brussels, Belgium, 2014.
- Pipintakos, G.; Lommaert, C.; Varveri, A.; Van den Bergh, W. Do chemistry and rheology follow the same laboratory ageing trends in bitumen? Mater. Struct. 2022, 55, 146. [Google Scholar] [CrossRef]
Property | Specification | Value | Reference |
---|---|---|---|
Penetration (dmm) | EN 1426 | 79 | [25] |
Softening Point (°C) | EN 1427 | 49.8 | [26] |
Elastic Recovery (%) | EN 13398 | 11 | [27] |
Force Ductility (J/cm2) | EN 13703 | 0.844 | [28] |
Dynamic Viscosity (Pa.s) | EN 13302 | Various 1 | [29] |
Penetration (dmm) | Softening Point (°C) | Elastic Recovery (%) | ΔTS.P. (°C) | |
---|---|---|---|---|
70/100 | 79 | 49.8 | 11 | - |
SCG-5 | 53 | 50.2 | 5 | 4.0 |
SCG-10 | 51 | 50.6 | 5 | 6.8 |
SCG-15 | 47 | 51.0 | 5 | Not Applicable 1 |
Penetration (dmm) | Softening Point (°C) | Elastic Recovery (%) | |
---|---|---|---|
70/100 | 60 | 52.2 | 8 |
SCG-5 | 32 | 52.8 | 5 |
SCG-10 | 30 | 53.4 | 5 |
SCG-15 | 30 | 56.6 | Not Applicable 1 |
Dynamic Viscosity (Pa.s) | Tmxing (°C) | ||||||
---|---|---|---|---|---|---|---|
130 °C | 140 °C | 150 °C | 160 °C | 170 °C | 180 °C | ||
70/100 | 0.350 | 0.250 | 0.175 | 0.125 | 0.100 | 0.075 | 146 |
SCG-5 | 0.475 | 0.350 | 0.250 | 0.200 | 0.125 | 0.100 | 156 |
SCG-10 | 0.525 | 0.350 | 0.250 | 0.200 | 0.125 | 0.100 | 159 |
SCG-15 | 0.550 | 0.350 | 0.250 | 0.200 | 0.150 | 0.100 | 161 |
Dynamic Viscosity (Pa.s) | ||||||
---|---|---|---|---|---|---|
130 °C | 140 °C | 150 °C | 160 °C | 170 °C | 180 °C | |
70/100 | 0.475 | 0.325 | 0.200 | 0.150 | 0.100 | 0.075 |
SCG-5 | 0.675 | 0.450 | 0.300 | 0.200 | 0.150 | 0.100 |
SCG-10 | 0.675 | 0.450 | 0.300 | 0.200 | 0.150 | 0.125 |
SCG-15 | 0.775 | 0.500 | 0.325 | 0.225 | 0.150 | 0.125 |
Penetration | S.P. | n130 °C | G*/sinδ | G* × sinδ | Tmixing | |
---|---|---|---|---|---|---|
Penetration | 1.00 | |||||
S.P. | 0.55 | 1.00 | ||||
n130°C | 0.92 | 0.78 | 1.00 | |||
G*/sinδ | 0.39 | 0.95 | 0.65 | 1.00 | ||
G* × sinδ | 0.67 | 0.83 | 0.79 | 0.70 | 1.00 | |
Tmixing | 0.98 | 0.87 | 1.00 | 0.55 | 0.68 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalampokis, S.; Valentin, J.; Manthos, E.; Konstantinidis, A.A. Investigation of the Rheological Properties and Ageing Susceptibility of Bitumen Bio-Modified with Spent Coffee Grounds. Constr. Mater. 2025, 5, 45. https://doi.org/10.3390/constrmater5030045
Kalampokis S, Valentin J, Manthos E, Konstantinidis AA. Investigation of the Rheological Properties and Ageing Susceptibility of Bitumen Bio-Modified with Spent Coffee Grounds. Construction Materials. 2025; 5(3):45. https://doi.org/10.3390/constrmater5030045
Chicago/Turabian StyleKalampokis, Stavros, Jan Valentin, Evangelos Manthos, and Avraam A. Konstantinidis. 2025. "Investigation of the Rheological Properties and Ageing Susceptibility of Bitumen Bio-Modified with Spent Coffee Grounds" Construction Materials 5, no. 3: 45. https://doi.org/10.3390/constrmater5030045
APA StyleKalampokis, S., Valentin, J., Manthos, E., & Konstantinidis, A. A. (2025). Investigation of the Rheological Properties and Ageing Susceptibility of Bitumen Bio-Modified with Spent Coffee Grounds. Construction Materials, 5(3), 45. https://doi.org/10.3390/constrmater5030045