Morphological and Cytogenetic Responses of In Vitro-Grown Grapevine (Vitis vinifera L.) Plants from “Touriga Franca”, “Touriga Nacional” and “Viosinho” Varieties Under Water Stress
Abstract
:1. Introduction
2. Results
2.1. Evaluation of the Morphological Traits
2.2. Analysis of the Leaf Mitotic Cell Cycle
3. Discussion
4. Materials and Methods
4.1. Sampling of Plant Material
4.2. Shoot Forcing, Culture Media Preparation and Explant Installation for WS Induction
4.3. Monitoring of the Morphological Traits
4.4. Analysis of the Leaf Cell Cycle
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef] [PubMed]
- Bonarota, M.-S.; Toups, H.S.; Bristow, S.T.; Santos, P.; Jackson, L.E.; Cramer, G.R.; Barrios-Masias, F.H. Drought response and recovery mechanisms of grapevine rootstocks grafted to a common Vitis vinifera scion. Plant Stress 2024, 11, 100346. [Google Scholar] [CrossRef]
- Jordão, A.M. Introductory Chapter: New challenges and innovations in grape and wine production. In Recent Advances in Grapes and Wine Production—New Perspectives for Quality Improvement; Jordão, A.M., Botelho, R., Miljić, U., Eds.; IntechOpen: Rijeka, Croatia, 2023; ISBN 978-1-80356-325-1. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2022; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; 3056p. [Google Scholar]
- Lovisolo, C.; Perrone, I.; Carra, A.; Ferrandino, A.; Flexas, J.; Medrano, H.; Schubert, A. Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: A physiological and molecular update. Funct. Plant Biol. 2010, 37, 98–116. [Google Scholar] [CrossRef]
- Bianchi, D.; Ricciardi, V.; Pozzoli, C.; Grossi, D.; Caramanico, L.; Pindo, M.; Stefani, E.; Cestaro, A.; Brancadoro, L.; De Lorenzis, G. Physiological and transcriptomic evaluation of drought effect on own-rooted and grafted grapevine rootstock (1103P and 101-14MGt). Plants 2023, 12, 1080. [Google Scholar] [CrossRef] [PubMed]
- Prinsi, B.; Simeoni, F.; Galbiati, M.; Meggio, F.; Tonelli, C.; Scienza, A.; Espen, L. Grapevine rootstocks differently affect physiological and molecular responses of the scion under water deficit condition. Agronomy 2021, 11, 289. [Google Scholar] [CrossRef]
- Harris, Z.N.; Pratt, J.E.; Kovacs, L.G.; Klein, L.L.; Kwasniewski, M.T.; Londo, J.P.; Wu, A.S.; Miller, A.J. Grapevine scion gene expression is driven by rootstock and environment interaction. BMC Plant Biol. 2023, 23, 211. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.C.; Amâncio, S. Cutting the Gordian knot of abiotic stress in grapevine: From the test tube to climate change adaptation. Physiol. Plant. 2018, 165, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.; Leal, F.; Matos, M.; Lima-Brito, J. Effects of heat stress in the leaf mitotic cell cycle and chromosomes of four wine-producing grapevine varieties. Protoplasma 2018, 255, 1725–1740. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.; Leal, F.; Matos, M.; Lima-Brito, J. Heat stress tolerance assayed in four wine-producing grapevine varieties using a cytogenetic approach. Ciencia Tec. Vitiv. 2019, 34, 61–70. [Google Scholar] [CrossRef]
- Nogales, A.; Ribeiro, H.; Nogales Bueno, J.; Hansen, L.D.; Gonçalves, E.F.; Coito, J.L.; Rato, A.E.; Peixe, A.; Viegas, W.; Cardoso, H. Response of mycorrhizal “Touriga Nacional” variety grapevines to high temperatures measured by calorespirometry and near-infrared spectroscopy. Plants 2020, 9, 1499. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.; Crisóstomo, C.; Leal, F.; Lima-Brito, J. Selection of reference genes and HSP17.9A expression profiling in heat-stressed grapevine varieties. Genes 2024, 15, 1283. [Google Scholar] [CrossRef]
- Carvalho, L.C.; Ramos, M.J.N.; Faísca-Silva, D.; van der Kellen, D.; Fernandes, J.C.; Egipto, R.; Lopes, C.M.; Amâncio, S. Developmental Regulation of transcription in Touriga Nacional berries under deficit irrigation. Plants 2022, 11, 827. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.; Dinis, L.-T.; Luzio, A.; Bernardo, S.; Moutinho-Pereira, J.; Lima-Brito, J. Cytogenetic and molecular effects of kaolin’s foliar application in grapevine (Vitis vinifera L.) under summer’s stressful growing conditions. Genes 2024, 15, 747. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.M.; Pereira, J.S.; Maroco, J.; Rodrigues, M.L.; Ricardo, C.P.; Osório, M.L.; Carvalho, I.; Faria, T.; Pinheiro, C. How plants cope with water stress in the field. Photosynthesis and Growth. Ann. Bot. 2002, 89, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Moutinho-Pereira, J.M.; Correia, C.M.; Gonçalves, B.M.; Bacelar, E.A.; Torres-Pereira, J.M. Leaf gas exchange and water relations of grapevines grown in three different conditions. Photosynthetica 2004, 42, 81–86. [Google Scholar] [CrossRef]
- Cabral, I.L.; Teixeira, A.; Lanoue, A.; Unlubayir, M.; Munsch, T.; Valente, J.; Alves, F.; da Costa, P.L.; Rogerson, F.S.; Carvalho, S.M.P.; et al. Impact of deficit irrigation on grapevine cv. ‘Touriga Nacional’ during three seasons in Douro region: An agronomical and metabolomics approach. Plants 2022, 11, 732. [Google Scholar] [CrossRef] [PubMed]
- Portaria no. 383/2017, Diário da República, 1.ª série–N.º 243–20 de Dezembro de 2017; Ministério da Agricultura, Florestas e Desenvolvimento Rural: Lisboa, Portugal, 2017; pp. 6659–6660. (In Portuguese)
- Portaria no. 380/2012, Diário da República, 1a Série—N.º 226—22 de Novembro de 2012; Ministério da Agricultura, do Mar, do Ambiente e do Ordenamento do Território: Lisboa, Portugal, 2012; pp. 6712–6715. (In Portuguese)
- Touriga Nacional—Vine and Wine Cluster, COLAB Vines & Wines, 7p. Available online: https://www.advid.pt/uploads/TourigaNacional_Final_25.10.pdf (accessed on 27 May 2024). (In Portuguese).
- Touriga Franca—Vine and Wine Cluster, COLAB Vines & Wines, 6p. Available online: https://www.advid.pt/uploads/TourigaFranca_Final_25.10.pdf (accessed on 27 May 2024). (In Portuguese).
- Viosinho—Vine and Wine Cluster, COLAB Vines & Wines, 5p. Available online: https://www.advid.pt/uploads/Viosinho_Final_25.08.pdf (accessed on 10 July 2024). (In Portuguese).
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef] [PubMed]
Mean Number (±S.E.) of: | ||||
---|---|---|---|---|
Nodes | Shoots | Leaves | ||
Variety (V) | TF | 0.90 ± 0.10 a | 0.93 ± 0.11 a | 0.83 ± 0.10 a |
TN | 1.00 ± 0.04 a | 0.93 ± 0.08 a | 0.88 ± 0.07 a | |
Viosinho | 1.61 ± 0.15 b | 1.85 ± 0.20 b | 1.63 ± 0.14 b | |
Treatment (T) | Control (0% PEG) | 1.70 ± 0.15 b | 1.73 ± 0.21 b | 1.46 ± 0.14 b |
10% PEG | 0.99 ± 0.08 a | 0.99 ± 0.11 a | 0.99 ± 0.10 a | |
20% PEG | 0.88 ± 0.09 a | 1.07 ± 0.12 a | 0.95 ± 0.10 a | |
V × T | TF × Control (0% PEG) | 1.38 ± 0.18 b | 1.00 ± 0.21 b | 1.08 ± 0.21 b |
TF × 10% PEG | 0.86 ± 0.16 a | 1.05 ± 0.19 b | 0.86 ± 0.16 a | |
TF × 20% PEG | 0.46 ± 0.10 a | 0.75 ± 0.19 a | 0.54 ± 0.13 a | |
TN × Control (0% PEG) | 0.89 ± 0.08 a | 0.83 ± 0.09 a | 0.94 ± 0.13 a | |
TN × 10% PEG | 1.00 ± 0.00 b | 0.71 ± 0.11 a | 0.67 ± 0.10 a | |
TN × 20% PEG | 1.12 ± 0.12 b | 1.35 ± 0.17 b | 1.12 ± 0.12 b | |
Viosinho × Control (0% PEG) | 2.63 ± 0.30 c | 3.13 ± 0.41 c | 2.21 ± 0.26 c | |
Viosinho × 10% PEG | 1.08 ± 0.17 b | 1.21 ± 0.23 b | 1.42 ± 0.22 b | |
Viosinho × 20% PEG | 1.13 ± 0.19 b | 1.21 ± 0.21 b | 1.25 ± 0.20 b | |
p-values | V | ˂0.05 | ˂0.05 | ˂0.05 |
T | <0.05 | <0.05 | <0.05 | |
V × T | <0.05 | <0.05 | <0.05 |
MI (%) | DCA (%) | ||
---|---|---|---|
Variety (V) | TF | 96.46 ± 0.81 a | 92.75 ± 2.44 b |
TN | 97.78 ± 0.67 a | 88.89 ± 3.88 a | |
VS | 99.68 ± 0.17 b | 89.73 ± 3.98 a | |
Treatment (T) | Control (0% PEG) | 96.99 ± 1.00 a | 89.03 ± 3.64 a |
10% PEG | 98.42 ± 0.45 b | 86.20 ± 3.88 a | |
20% PEG | 98.29 ± 0.80 b | 97.03 ± 1.03 b | |
V × T | TF × Control (0% PEG) | 95.48 ± 1.83 a | 94.62 ± 0.75 b |
TF × 10% PEG | 98.67 ± 0.59 b | 85.27 ± 4.99 a | |
TF× 20% PEG | 95.23 ± 0.75 a | 98.35 ± 0.86 b | |
TN × Control (0% PEG) | 96.26 ± 2.10 a | 95.89 ± 0.47 b | |
TN × 10% PEG | 97.61 ± 0.69 b | 82.72 ± 7.04 a | |
TN × 20% PEG | 99.63 ± 0.28 b | 94.25 ± 2.44 b | |
VS × Control (0% PEG) | 99.24 ± 0.41 b | 76.59 ± 6.47 a | |
VS × 10% PEG | 99.81 ± 0.19 b | 94.11 ± 3.73 b | |
VS × 20% PEG | 100.00 ± 0.00 c | 98.50 ± 0.42 c | |
p-values | V | ˂0.05 | ˂0.05 |
T | ˂0.05 | ˂0.05 | |
V × T | ˂0.05 | ˂0.05 |
Normal Dividing Cells in: | ||||
---|---|---|---|---|
Prophase | Metaphase | Anaphase | ||
Variety (V) | TF | 40.78 ± 14.46 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
TN | 25.33 ± 5.67 a | 0.08 ± 0.08 b | 0.08 ± 0.08 b | |
VS | 45.56 ± 18.46 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
Treatment (T) | Control (0% PEG) | 54.56 ± 16.47 c | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
10% PEG | 38.83 ± 11.53 b | 0.08 ± 0.08 b | 0.08 ± 0.08 b | |
20% PEG | 13.78 ± 4.59 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
V × T | TF × Control (0% PEG) | 30.00 ± 8.33 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
TF × 10% PEG | 83.00 ± 31.18 d | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
TF × 20% PEG | 9.00 ± 4.16 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
TN × Control (0% PEG) | 28.33 ± 7.13 c | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
TN × 10% PEG | 24.33 ± 10.02 b | 0.17 ± 0.17 b | 0.17 ± 0.17 b | |
TN × 20% PEG | 24.33 ± 12.14 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
VS × Control (0% PEG) | 105.00 ± 35.03 d | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
VS × 10% PEG | 23.67 ± 12.17 b | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
VS × 20% PEG | 8.00 ± 2.08 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
p-values | V | ˂0.05 | ˂0.05 | ˂0.05 |
T | ˂0.05 | ˂0.05 | ˂0.05 | |
V × T | ˂0.05 | ˂0.05 | ˂0.05 |
Irregular Dividing Cells in: | ||||
---|---|---|---|---|
Prophase | Metaphase | Anaphase | ||
Variety (V) | TF | 260.50 ± 65.18 b | 0.94 ± 0.26 a | 0.22 ± 0.09 a |
TN | 151.75 ± 49.40 a | 3.04 ± 1.36 c | 0.38 ± 0.10 a | |
VS | 224.50 ± 64.14 b | 1.11 ± 0.24 a | 0.17 ± 0.06 a | |
Treatment (T) | Control | 248.44 ± 68.21 b | 1.06 ± 0.27 a | 0.31 ± 0.11 b |
10% PEG | 147.92 ± 48.45 a | 0.81 ± 0.26 a | 0.13 ± 0.05 a | |
20% PEG | 241.67 ± 62.11 b | 3.97 ± 1.78 b | 0.42 ± 0.11 b | |
V × T | TF × Control | 255.50 ± 117.60 c | 0.92 ± 0.50 b | 0.08 ± 0.08 b |
TF × 10% PEG | 247.33 ± 117.16 c | 0.25 ± 0.13 a | 0.00 ± 0.00 a | |
TF× 20% PEG | 278.67 ± 125.21 c | 1.67 ± 0.54 b | 0.58 ± 0.23 c | |
TN × Control | 326.67 ± 159.00 d | 0.67 ± 0.33 b | 0.42 ± 0.29 c | |
TN × 10% PEG | 50.58 ± 14.78 a | 1.13 ± 0.49 b | 0.25 ± 0.09 b | |
TN × 20% PEG | 179.17 ± 91.11 b | 9.25 ± 5.09 c | 0.58 ± 0.19 c | |
VS × Control | 163.17 ± 75.26 b | 1.58 ± 0.56 b | 0.42 ± 0.15 c | |
VS × 10% PEG | 243.17 ± 144.64 c | 0.75 ± 0.31 a | 0.00 ± 0.00 a | |
VS × 20% PEG | 267.17 ± 119.10 c | 1.00 ± 0.35 b | 0.08 ± 0.08 b | |
p-values | V | ˂0.05 | ˂0.05 | ˃0.05 |
T | ˂0.05 | ˂0.05 | ˂0.05 | |
V × T | ˂0.05 | ˂0.05 | ˂0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, A.; Crisóstomo, C.; Leal, F.; Lima-Brito, J. Morphological and Cytogenetic Responses of In Vitro-Grown Grapevine (Vitis vinifera L.) Plants from “Touriga Franca”, “Touriga Nacional” and “Viosinho” Varieties Under Water Stress. Stresses 2024, 4, 685-698. https://doi.org/10.3390/stresses4040044
Carvalho A, Crisóstomo C, Leal F, Lima-Brito J. Morphological and Cytogenetic Responses of In Vitro-Grown Grapevine (Vitis vinifera L.) Plants from “Touriga Franca”, “Touriga Nacional” and “Viosinho” Varieties Under Water Stress. Stresses. 2024; 4(4):685-698. https://doi.org/10.3390/stresses4040044
Chicago/Turabian StyleCarvalho, Ana, Christina Crisóstomo, Fernanda Leal, and José Lima-Brito. 2024. "Morphological and Cytogenetic Responses of In Vitro-Grown Grapevine (Vitis vinifera L.) Plants from “Touriga Franca”, “Touriga Nacional” and “Viosinho” Varieties Under Water Stress" Stresses 4, no. 4: 685-698. https://doi.org/10.3390/stresses4040044
APA StyleCarvalho, A., Crisóstomo, C., Leal, F., & Lima-Brito, J. (2024). Morphological and Cytogenetic Responses of In Vitro-Grown Grapevine (Vitis vinifera L.) Plants from “Touriga Franca”, “Touriga Nacional” and “Viosinho” Varieties Under Water Stress. Stresses, 4(4), 685-698. https://doi.org/10.3390/stresses4040044