Stress and Energy Mobilization Responses of Climbing Perch Anabas testudineus During Terrestrial Locomotion
Abstract
1. Introduction
2. Results
2.1. Thyroid Hormones and Cortisol
2.2. Triglycerides and Protein Exchange Parameters
3. Discussion
3.1. Parameters Related to Stress
3.2. Parameters Related to Air Respiration and Terrestrial Movements
4. Materials and Methods
4.1. Animals and Housing
4.2. Experimental Apparatus
4.3. Behavioral Tests
4.4. Blood Sampling
4.5. Biochemical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Damsgaard, C.; Baliga, V.B.; Bates, E.; Burggren, W.; McKenzie, D.J.; Taylor, E.; Wright, P.A. Evolutionary and cardio-respiratory physiology of air-breathing and amphibious fishes. Acta Physiol. 2020, 228, e13406. [Google Scholar] [CrossRef] [PubMed]
- Sayer, M.D.J. Adaptations of amphibious fish for surviving life out of water. Fish Fish. 2005, 6, 186–211. [Google Scholar] [CrossRef]
- Zworykin, D.D. First record of the spawning capable climbing perch Anabas testudineus (Teleostei: Anabantidae) during the dry season. Ichthyol. Explor. Freshw. 2021, 31, 15–20. [Google Scholar] [CrossRef]
- Pace, C.M.; Gibb, A.C. Sustained periodic terrestrial locomotion in air-breathing fishes. J. Fish Biol. 2014, 84, 639–660. [Google Scholar] [CrossRef] [PubMed]
- Davenport, J.; Martin, A.K.M.A. Terrestrial locomotion in the climbing perch, Anabas testudineus (Bloch) (Anabantidae, Pisces). J. Fish Biol. 1990, 37, 175–184. [Google Scholar] [CrossRef]
- Graham, J.B. Air-Breathing Fishes: Evolution, Diversity, and Adaptation; Academic Press: San Diego, CA, USA, 1997. [Google Scholar]
- Poulsen, A.F.; Jørgensen, J.V. Fish Migrations and Spawning Habits in the Mekong Mainstream: A Survey Using Local Knowledge; Mekong River Commission: Vientiane, Laos, 2000.
- Pavlov, D.A. Feeding-related skull structures of climbing perch Anabas testudineus (Anabantidae). J. Ichthyol. 2023, 63, 788–796. [Google Scholar] [CrossRef]
- Pavlov, E.D.; Pavlov, D.S.; Ganzha, E.V.; Kostin, V.V.; Dien, T.D. Influence of water level on the exit of climbing perch Anabas testudineus out of the water and specific features of its movements. J. Ichthyol. 2021, 61, 752–757. [Google Scholar] [CrossRef]
- Liem, K.F. Functional design of the air ventilation apparatus and overland excursions by teleosts. Fieldiana Zool. 1987, 37, 1–29. [Google Scholar]
- Sayer, M.D.J.; Davenport, J. Amphibious fish: Why do they leave water? Rev. Fish Biol. Fish. 1991, 1, 159–181. [Google Scholar] [CrossRef]
- Das, B.K. The bionomics of certain air-breathing fishes of India, together with an account of the development of their air-breathing organs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1927, 216, 183–219. [Google Scholar]
- Smith, H.M. The freshwater fishes of Siam, or Thailand. In United States National Museum Bulletin 188; Smithsonian Institution Press: Washington, DC, USA, 1945. [Google Scholar]
- Mookerjee, H.K.; Mazumdar, S.R. On the life history, breeding, and rearing of Anabas testudineus Bloch. J. Dep. Sci. Calcutta Univ. 1946, 2, 101–140. [Google Scholar]
- Falco, F.; Stincone, P.; Cammarata, M.; Brandelli, A. Amino acids as the main energy source in fish tissues. Aquacult. Fish Stud. 2020, 3, 1–11. [Google Scholar] [CrossRef]
- Ahmad, R.; Hasnain, A.U. Ontogenetic changes and developmental adjustments in lactate dehydrogenase isozymes of an obligate air-breathing fish Channa punctatus during deprivation of air access. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2005, 140, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Matsche, M.A.; Gibbons, J. Annual variation of hematology and plasma chemistry in shortnose sturgeon (Acipenser brevirostrum) during a dam-impeded spawning run. Fish Physiol. Biochem. 2012, 38, 1679–1696. [Google Scholar] [CrossRef] [PubMed]
- Ganzha, E.V.; Pavlov, D.S.; Pavlov, E.D. Heterogeneity of biochemical parameters of non-native pink salmon Oncorhynchus gorbuscha spawners at the beginning of up-river movements. Water 2024, 16, 2000. [Google Scholar] [CrossRef]
- Barton, B.A. Stress in Fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 2002, 42, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Peter, M.C.S. The Role of Thyroid Hormones in Stress Response of Fish. Gen. Comp. Endocrinol. 2011, 172, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Ord, T.J.; Cooke, G.M. Repeated evolution of amphibious behavior in fish and its implications for the colonization of novel environments. Evolution 2016, 70, 1747–1759. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Tissot, L.; Argillier, C. Environmental drivers of fish spatial distribution and activity in a reservoir with water level fluctuations. Hydrobiologia 2021, 848, 25–46. [Google Scholar] [CrossRef]
- Dolomatov, S.I.; Kubyshkin, A.V.; Kutia, S.A.; Zukow, W. Role of thyroid hormones in fishes. J. Health Sci. 2013, 3, 279–296. [Google Scholar]
- Pavlov, E.D.; Ganzha, E.V.; Pavlov, D.S. Thyroid and sex steroid hormone levels in pink salmon Oncorhynchus gorbuscha during marine and freshwater periods of spawning migration. J. Ichthyol. 2022, 62, 487–494. [Google Scholar] [CrossRef]
- Lemos, L.S.; Angarica, L.M.; Hauser-Davis, R.A.; Quinete, N. Cortisol as a stress indicator in fish: Sampling methods, analytical techniques, and organic pollutant exposure assessments. Int. J. Environ. Res. Public Health 2023, 20, 6237. [Google Scholar] [CrossRef] [PubMed]
- Wedemeyer, G.A.; Barton, B.A.; McLeay, D.J. Stress and acclimation. In Methods for Fish Biology; Schreck, C.B., Moyle, P.B., Eds.; American Fisheries Society: Bethesda, MD, USA, 1990; pp. 491–527. [Google Scholar]
- Lowe, C.J.; Davison, W. Plasma osmolarity, glucose concentration, and erythrocyte responses of two antarctic nototheniid fishes to acute and chronic thermal change. J. Fish Biol. 2005, 67, 752–766. [Google Scholar] [CrossRef]
- Randall, D.J.; Perry, S.F. Catecholamines. In Fish Physiology; Hoar, W.S., Randall, D.J., Farrell, T.P., Eds.; Academic Press: New York, NY, USA, 1992; Volume XII, pp. 277–324. [Google Scholar]
- Barton, B.A.; Iwama, G.K. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1991, 1, 3–26. [Google Scholar] [CrossRef]
- Barton, B.A. Stress in finfish: Past, present, and future—A historical perspective. In Fish Stress and Health in Aquaculture; Iwama, G.K., Pickering, A.D., Sumpter, J.P., Schreck, C.B., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 17–33. [Google Scholar]
- Begg, K.; Pankhurst, N.W. Endocrine and metabolic responses to stress in a laboratory population of the tropical damselfish Acanthochromis polyacanthus. J. Fish Biol. 2004, 64, 133–145. [Google Scholar] [CrossRef]
- Rottmann, R.W.; Francis-Floyd, R.; Durborow, R. The role of stress in fish disease. In SRAC Publication No. 474; Southern Regional Aquaculture Center: Washington County, MS, USA, 1992. [Google Scholar]
- Martínez-Porchas, M.; Martínez-Córdova, L.R.; Ramos-Enríquez, R. Cortisol and glucose: Reliable indicators of fish stress? Pan-Am. J. Aquat. Sci. 2009, 4, 158–178. [Google Scholar]
- McMahon, B.R. A functional analysis of the aquatic and aerial respiratory movements of an African lungfish, Protopterus aethiopicus, with reference to the evolution of the lung-ventilation mechanism in vertebrates. J. Exp. Biol. 1969, 51, 407–430. [Google Scholar] [CrossRef] [PubMed]
- DeLaney, R.G.; Fishman, A.P. Analysis of lung ventilation in the aestivating lungfish Protopterus aethiopicus. Am. J. Physiol. 1977, 233, R181–R187. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.G.; Mercado, A.J.; Clayton, C.A.; Heigenhauser, G.J.F.; Wood, C.M. Substrate utilization during graded aerobic exercise in rainbow trout. J. Exp. Biol. 2002, 205, 2067–2077. [Google Scholar] [CrossRef] [PubMed]
- Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Magnoni, L.; Weber, J.M. Endurance swimming activates trout lipoprotein lipase: Plasma lipids as a fuel for muscle. J. Exp. Biol. 2007, 210, 4016–4023. [Google Scholar] [CrossRef] [PubMed]
- Magnoni, L.; Vaillancourt, E.; Weber, J.M. High resting triacylglycerol turnover of rainbow trout exceeds the energy requirements of endurance swimming. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2008, 295, R309–R315. [Google Scholar] [CrossRef] [PubMed]
- Marit, J.S.; Weber, L.P. Acute exposure to 2,4-dinitrophenol alters zebrafish swimming performance and whole body triglyceride levels. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 154, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Munkittrick, K.R.; Dixon, P.G. Growth, Fecundity, and energy stores of white sucker (Catostomus commersoni) from lakes containing elevated levels of copper and zinc. Can. J. Fish. Aquat. Sci. 1988, 45, 1355–1365. [Google Scholar] [CrossRef]
- Levesque, H.M.; Moon, T.W.; Campbell, P.G.; Hontela, A. Seasonal variation in carbohydrate and lipid metabolism of yellow perch (Perca flavescens) chronically exposed to metals in the field. Aquat. Toxicol. 2002, 60, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Morash, A.J.; Vanderveken, M.; McClelland, G.B. Muscle metabolic remodeling in response to endurance exercise in salmonids. Front. Physiol. 2014, 5, 452. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, E.H.; Martinsen, M.; Strøm, V.; Hansen, K.E.; Ravuri, C.S.; Gong, N.; Jobling, M. Long-Term fasting in the anadromous arctic charr is associated with downregulation of metabolic enzyme activity and upregulation of leptin A1 and SOCS expression in the liver. J. Exp. Biol. 2013, 216, 3222–3230. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Val, V.M.F.; Hochachka, P.W. Air-breathing fishes: Metabolic biochemistry of the first diving vertebrate. In Biochemistry and Molecular Biology of Fishes; Hochachka, P.W., Mommsen, T.P., Eds.; Elsevier: Amsterdam, The Netherlands, 1995; Volume 5, pp. 45–53. [Google Scholar]
- Almeida-Val, V.M.F.; Luis Val, A. Evolutionary trends of LDH isozymes in fishes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1993, 105, 21–28. [Google Scholar] [CrossRef]
- OECD. Guideline for Testing of Chemicals, 12th ed.; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Binoy, V.V.; Thomas, K.J. The climbing perch (Anabas testudineus Bloch), a freshwater fish, prefers larger unfamiliar shoals to smaller familiar shoals. Curr. Sci. 2004, 86, 207–211. Available online: https://www.academia.edu/2110254/The_climbing_perch_Anabas_testudineus_Bloch_a_freshwater_fish_prefers_larger_unfamiliar_shoals_to_smaller_familiar_shoals (accessed on 20 July 2025).
- Zworykin, D.D. The behavior of climbing perch, Anabas testudineus, with novel food in individual and social conditions. J. Ichthyol. 2018, 58, 260–264. [Google Scholar] [CrossRef]
- Lawrence, M.J.; Jain-Schlaepfer, S.; Zolderdo, A.J.; Algera, D.A.; Gilmour, K.M.; Gallagher, A.J.; Cooke, S. Are 3 minutes good enough for obtaining baseline physiological samples from teleost fish? Can. J. Zool. 2018, 96, 774–786. [Google Scholar] [CrossRef]
- Johnston, C.E.; Eales, J.G. Effects of acclimation and assay temperature on outer- and inner-ring thyroxine and 3,5,3′-triiodo-l-thyronine deiodination by liver microsomes of rainbow trout, Oncorhynchus mykiss. J. Exp. Zool. 1995, 272, 426–434. [Google Scholar] [CrossRef]
- Comeau, L.A.; Campana, S.E. Correlations between thyroidal and reproductive endocrine status in wild Atlantic cod. In Canadian Technical Reports of Fisheries and Aquatic Sciences 2682; Fisheries and Oceans Canada: Halifax, NS, Canada, 2006. [Google Scholar]
- Ebbesson, L.O.E.; Bjornsson, B.T.; Stefansson, S.O.; Ekström, P. Free plasma thyroxine levels in coho salmon, Oncorhynchus kisutch, during parr-smolt transformation: Comparison with total thyroxine, total triiodothyronine, and growth hormone levels. Fish Physiol. Biochem. 2000, 22, 45–50. [Google Scholar] [CrossRef]
Parameters | Aquatic Conditions | Terrestrial Conditions | ||
---|---|---|---|---|
Value | n | Value | n | |
T3, ng/mL | 8.3 ± 2.69 (4.0–14.8) | 20 | 9.9 ± 2.47 (4.9–13.9) | 20 |
FT3, pg/mL | 10.2 ± 5.26 (4.9–22.6) | 20 | 12.8 ± 8.26 (3.5–32.8) | 19 |
T4, μg/dL | 13.1 ± 2.92 (8.6–19.5) | 20 | 13.2 ± 3.29 (8.7–22.4) | 20 |
%FT3 | 0.13 ± 0.077 (0.06–0.32) | 20 | 0.13 ± 0.060 (0.05–0.24) | 18 |
T4/T3 | 17.9 ± 8.9 (8.4–47.4) | 20 | 14.0 ± 4.18 (7.6–25.4) | 20 |
Cort, ng/mL | 234 ± 58.4 (150–380) | 20 | 448 ± 171.4 (214–877) | 20 |
Parameters | Aquatic Conditions | Terrestrial Conditions | ||
---|---|---|---|---|
Value | n | Value | n | |
TGs, mmol/L | 2.5 ± 2.02 (0.3–6.8) | 18 | 4.4 ± 2.33 (1.1–8.5) | 19 |
GLU, mmol/L | 7.6 ± 3.48 (2.4–16.5) | 20 | 9.7 ± 3.35 (2.7–14.8) | 19 |
AST, U/L | 495 ± 25.6 (434–538) | 19 | 455 ± 52.2 (352–542) | 16 |
LDH, U/L | 1211 ± 74.1 (1034–1294) | 19 | 1180 ± 97.1 (935–1330) | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlov, E.D.; Dien, T.D.; Ganzha, E.V. Stress and Energy Mobilization Responses of Climbing Perch Anabas testudineus During Terrestrial Locomotion. Stresses 2025, 5, 45. https://doi.org/10.3390/stresses5030045
Pavlov ED, Dien TD, Ganzha EV. Stress and Energy Mobilization Responses of Climbing Perch Anabas testudineus During Terrestrial Locomotion. Stresses. 2025; 5(3):45. https://doi.org/10.3390/stresses5030045
Chicago/Turabian StylePavlov, Efim D., Tran Duc Dien, and Ekaterina V. Ganzha. 2025. "Stress and Energy Mobilization Responses of Climbing Perch Anabas testudineus During Terrestrial Locomotion" Stresses 5, no. 3: 45. https://doi.org/10.3390/stresses5030045
APA StylePavlov, E. D., Dien, T. D., & Ganzha, E. V. (2025). Stress and Energy Mobilization Responses of Climbing Perch Anabas testudineus During Terrestrial Locomotion. Stresses, 5(3), 45. https://doi.org/10.3390/stresses5030045