Tackling Threats from Emerging Fungal Pathogens: Tech-Driven Approaches for Surveillance and Diagnostics
Abstract
1. Introduction
2. Recent Advances in Surveillance, Monitoring, and Detection of Emerging Fungal Diseases
2.1. Remote Sensing Technologies
2.2. Lab-Based Detection Techniques
2.2.1. PCR-Based Techniques
2.2.2. DNA Microarray Technology
2.2.3. Next-Generation or High-Throughput Sequencing
2.2.4. Nucleic Acid Sequence-Based Amplification (NASBA)
2.2.5. DNA or RNA Probe-Based Techniques
2.3. Field-Applicable
2.3.1. Loop-Mediated Isothermal Amplification (LAMP)
2.3.2. Sensor-Based Technologies
2.3.3. Rolling Circle Amplification (RCA)
2.4. Data Mining/Big Data Analysis/Metagenomics
2.4.1. Data Mining and Big Data Analytics
2.4.2. Genomic Surveillance and Bioinformatics
3. Biovigilance Systems for Detecting Emerging Plant Fungal Diseases
4. Cost and Feasibility of Advanced Detection Tools in Low-Resource Settings
5. Advisory Services for Fungal Disease Management: A Strategic Response Framework
6. Key Issues and Challenges in the Adoption of Tech-Driven Approaches
7. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2018; Building climate resilience for food security and nutrition; FAO: Rome, Italy, 2018; Licence: CC BY-NC-SA 3.0 IGO; Available online: https://creativecommons.org/licenses/by-nc-sa/3.0/igo (accessed on 22 December 2024).
- Shuping, D.S.S.; Eloff, J.N. The Use of Plants to Protect Plants and Food Against Fungal Pathogens: A Review. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Doehlemann, G.; Ökmen, B.; Zhu, W.; Sharon, A. Plant Pathogenic Fungi. Fungal Kingd. 2017, 5, 701–726. [Google Scholar] [CrossRef]
- Malcolm, G.M.; Kuldau, G.A.; Gugino, B.K.; Jiménez-Gasco, M.D.M. Hidden Host Plant Associations of Soilborne Fungal Pathogens: An Ecological Perspective. Phytopathology 2013, 103, 538–544. [Google Scholar] [CrossRef]
- Fisher, M.C.; Gurr, S.J.; Cuomo, C.A.; Blehert, D.S.; Jin, H.; Stukenbrock, E.H.; Cowen, L.E. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. MBio 2020, 11, 10–1128. [Google Scholar] [CrossRef]
- Narayanasamy, P.; Narayanasamy, P. Diagnosis of fungal diseases of plants. In Microbial Plant Pathogens-Detection and Disease Diagnosis: Fungal Pathogens; Springer: Dordrecht, The Netherlands, 2011; Volume 1, pp. 273–284. [Google Scholar] [CrossRef]
- Iqbal, Z.; Khan, M.A.; Sharif, M.; Shah, J.H.; ur Rehman, M.H.; Javed, K. An automated detection and classification of citrus plant diseases using image processing techniques: A review. Comput. Electron. Agric. 2018, 153, 12–32. [Google Scholar] [CrossRef]
- Rodriguez-Moreno, L.; Ebert, M.K.; Bolton, M.D.; Thomma, B.P. Tools of the crook-infection strategies of fungal plant pathogens. Plant J. 2018, 93, 664–674. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sultana, F.; Mostafa, M.; Ferdus, H.; Rahman, M.; Rana, J.A.; Al Sabbir, M.A. Plant disease dynamics in a changing climate: Impacts, molecular mechanisms, and climate-informed strategies for sustainable management. Discov. Agric. 2024, 2, 132. [Google Scholar] [CrossRef]
- Hossain, M.M. Wheat blast: A review from a genetic and genomic perspective. Front. Microbiol. 2022, 13, 983243. [Google Scholar] [CrossRef]
- Mutiga, S.K.; Hoffmann, V.; Harvey, J.W.; Milgroom, M.G.; Nelson, R.J. Assessment of aflatoxin and fumonisin contamination of maize in western Kenya. Phytopathology 2015, 105, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Prova, A.; Akanda, A.M.; Islam, S.; Hossain, M.M. Characterization of Sclerotinia sclerotiorum, an Emerging Fungal Pathogen Causing Blight in Hyacinth Bean (Lablab purpureus). Plant Pathol. J. 2018, 34, 367–380. [Google Scholar] [CrossRef]
- Jahan, R.; Siddique, S.S.; Jannat, R.; Hossain, M.M. Cosmos white rot: First characterization, physiology, host range, disease resistance, and chemical control. J Basic Microbiol 2022, 62, 911–929. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sultana, F.; Li, W.; Tran, L.-S.P.; Mostofa, M.G. Sclerotinia sclerotiorum (Lib.) de Bary: Insights into the Pathogenomic Features of a Global Pathogen. Cells 2023, 12, 1063. [Google Scholar] [CrossRef]
- Islam, M.R.; Akanda, A.M.; Hossain, M.M.; Hossain, M.M. First Characterization of a Newly Emerging Phytopathogen, Sclerotinia sclerotiorum Causing White Mold in Pea. J. Basic Microbiol. 2021, 61, 923–939. [Google Scholar] [CrossRef]
- Avelino, J.; Cristancho, M.; Georgiou, S.; Imbach, P.; Aguilar, L.; Bornemann, G.; Morales, C. The Coffee Rust Crises in Colombia and Central America (2008–2013): Impacts, Plausible Causes and Proposed Solutions. Food Secur. 2015, 7, 303–321. [Google Scholar] [CrossRef]
- Sieff, K. The Migration Problem Is a Coffee Problem. The Washington Post, 11 June 2019. Available online: https://www.washingtonpost.com/world/2019/06/11/falling-coffee-prices-drive-guatemalan-migration-united-states/ (accessed on 7 October 2019).
- Stokstad, E. Devastating Banana Disease May Have Reached Latin America, Could Drive Up Global Prices. Science 2019, 365, 207–208. [Google Scholar] [CrossRef]
- Vurro, M.; Bonciani, B.; Vannacci, G. Emerging Infectious Diseases of Crop Plants in Developing Countries: Impact on Agriculture and Socio-Economic Consequences. Food Secur. 2010, 2, 113–132. [Google Scholar] [CrossRef]
- Gewin, V. Bioterrorism: Agriculture shock. Nature 2003, 421, 106–109. [Google Scholar] [CrossRef]
- Dutech, C.; Barrès, B.; Bridier, J.; Robin, C.; Milgroom, M.G.; Ravigné, V. The chestnut blight fungus world tour: Successive introduction events from diverse origins in an invasive plant fungal pathogen. Mol. Ecol. 2012, 21, 3931–3946. [Google Scholar] [CrossRef] [PubMed]
- Hovmøller, M.S.; Rodriguez-Algaba, J.; Thach, T.; Sørensen, C.K. Race typing of Puccinia striiformis on wheat. In Wheat Rust Diseases: Methods and Protocols; Springer: New York, NY, USA, 2017; pp. 29–40. [Google Scholar] [CrossRef]
- Abdissa, T.; Fininsa, C.; Abeyo, B.; Woldeab, G. Virulence analysis of wheat stem rust (Puccinia graminis f. sp. tritici) in Horro Guduru Wollega, Western Ethiopia. J. Phytopathol. 2022, 170, 315–325. [Google Scholar] [CrossRef]
- Fones, H.N.; Fisher, M.C.; Gurr, S.J. Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience. Microbiol. Spectr. 2017, 5, 787–809. [Google Scholar] [CrossRef] [PubMed]
- Friesen, T.L.; Stukenbrock, E.H.; Liu, Z.; Meinhardt, S.; Ling, H.; Faris, J.D.; Rasmussen, J.B.; Solomon, P.S.; McDonald, B.A.; Oliver, R.P. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 2006, 38, 953–956. [Google Scholar] [CrossRef] [PubMed]
- Gladieux, P.; Feurtey, A.; Hood, M.E.; Snirc, A.; Clavel, J.; Dutech, C.; Roy, M.; Giraud, T. The Population Biology of Fungal Invasions. In Invasion Genetics; Barrett, S.C.H., Colautti, R.I., Dlugosch, K.M., Rieseberg, L.H., Eds.; Wiley: Hoboken, NJ, USA, 2016; pp. 81–100. [Google Scholar] [CrossRef]
- Ceresini, P.C.; Castroagudín, V.L.; Rodrigues, F.Á.; Rios, J.A.; Aucique-Pérez, C.E.; Moreira, S.I.; Alves, E.; Croll, D.; Maciel, J.L.N. Wheat blast: Past, present, and future. Annu. Rev. Phytopathol. 2018, 56, 427–456. [Google Scholar] [CrossRef] [PubMed]
- Capote, N.; Pastrana, A.M.; Aguado, A.; Sánchez-Torres, P. Molecular Tools for Detection of Plant Pathogenic Fungi and Fungicide Resistance. Plant Pathol. 2012, 12, 151–202. [Google Scholar] [CrossRef]
- Rollins, L.; Coats, K.; Elliott, M.; Chastagner, G. Comparison of five detection and quantification methods for Phytophthora ramorum in stream and irrigation water. Plant Dis. 2016, 100, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sharma, S. Paradigm Shift in Plant Disease Diagnostics: A Journey from Conventional Diagnostics to Nano-Diagnostics. In Current Trends in Plant Disease Diagnostics and Management Practices; Springer: Cham, Switzerland, 2016; pp. 237–264. [Google Scholar] [CrossRef]
- Luchi, N.; Ioos, R.; Santini, A. Fast and Reliable Molecular Methods to Detect Fungal Pathogens in Woody Plants. Appl. Microbiol. Biotechnol. 2020, 104, 2453–2468. [Google Scholar] [CrossRef]
- Schmale III, D.G.; Ross, S.D. Highways in the Sky: Scales of Atmospheric Transport of Plant Pathogens. Annu. Rev. Phytopathol. 2015, 53, 591–611. [Google Scholar] [CrossRef]
- Lievens, B.; Claes, L.; Vanachter, A.C.; Cammue, B.P.; Thomma, B.P. Detecting single nucleotide polymorphisms using DNA arrays for plant pathogen diagnosis. FEMS Microbiol. Lett. 2006, 255, 129–139. [Google Scholar] [CrossRef]
- Adams, I.P.; Fox, A.; Boonham, N.; Massart, S.; De Jonghe, K. The impact of high throughput sequencing on plant health diagnostics. Eur. J. Plant Pathol. 2018, 152, 909–919. [Google Scholar] [CrossRef]
- Le, D.T.; Vu, N.T. Progress of Loop-Mediated Isothermal Amplification Technique in Molecular Diagnosis of Plant Diseases. Appl. Biol. Chem. 2017, 60, 169–180. [Google Scholar] [CrossRef]
- Li, Z.; Paul, R.; Ba Tis, T.; Saville, A.C.; Hansel, J.C.; Yu, T.; Ristaino, J.B.; Wei, Q. Non-Invasive Plant Disease Diagnostics Enabled by Smartphone-Based Fingerprinting of Leaf Volatiles. Nat. Plants 2019, 5, 856–866. [Google Scholar] [CrossRef]
- Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects. J. Microbiol. 2015, 53, 1–5. [Google Scholar] [CrossRef]
- O’Shea, J. Digital disease detection: A systematic review of event-based internet biosurveillance systems. Int. J. Med. Inform. 2017, 101, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Tateosian, L.; Guenter, R.; Yang, Y.P.; Ristaino, J. Tracking 19th Century Late Blight from Archival Documents Using Text Analytics and Geoparsing. In Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings; the Open Source Geospatial Foundation: Beaverton, OR, USA, 2017; Volume 17, p. 17. [Google Scholar] [CrossRef]
- Agrawal, S.; Azar, P.D.; Lo, A.W.; Singh, T. Momentum, mean-reversion, and social media: Evidence from StockTwits and Twitter. J. Portf. Manag. 2018, 44, 85–95. [Google Scholar] [CrossRef]
- Mahlein, A.K. Plant Disease Detection by Imaging Sensors–Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Franke, J.; Menz, G. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precis. Agric. 2007, 8, 161–172. [Google Scholar] [CrossRef]
- Chin, R.; Catal, C.; Kassahun, A. Plant Disease Detection Using Drones in Precision Agriculture. Precis. Agric. 2023, 24, 1663–1682. [Google Scholar] [CrossRef]
- Abdulridha, J.; Min, A.; Rouse, M.N.; Kianian, S.; Isler, V.; Yang, C. Evaluation of Stem Rust Disease in Wheat Fields by Drone Hyperspectral Imaging. Sensors 2023, 23, 4154. [Google Scholar] [CrossRef] [PubMed]
- Parnell, S.; van den Bosch, F.; Gottwald, T.; Gilligan, C.A. Surveillance to inform control of emerging plant diseases: An epidemiological perspective. Annu. Rev. Phytopathol. 2017, 55, 591–610. [Google Scholar] [CrossRef]
- Ma, Z.; Michailides, T.J. Approaches for Eliminating PCR Inhibitors and Designing PCR Primers for the Detection of Phytopathogenic Fungi. Crop. Prot. 2007, 26, 145–161. [Google Scholar] [CrossRef]
- Sikdar, P.; Okubara, P.A.; Mazzola, M.; Xiao, C.L. Development of PCR Assays for Diagnosis and Detection of the Pathogens Phacidiopycnis washingtonensis and Sphaeropsis pyriputrescens in Apple Fruit. Plant Dis. 2014, 98, 241–246. [Google Scholar] [CrossRef]
- Yang, X.; Hameed, U.; Zhang, A.F.; Zang, H.Y.; Gu, C.Y.; Chen, Y.; Xu, Y.L. Development of a Nested-PCR Assay for the Rapid Detection of Pilidiella granati in Pomegranate Fruit. Sci. Rep. 2017, 7, 40954. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.; Cinget, B.; Vivancos, J.; Oudemans, P.; Bélanger, R.R. A Molecular Assay Allows the Simultaneous Detection of 12 Fungi Causing Fruit Rot in Cranberry. Plant Dis. 2019, 103, 2843–2850. [Google Scholar] [CrossRef]
- Ji Cho, H.; Hong, S.W.; Kim, H.J.; Kwak, Y.S. Development of a multiplex PCR method to detect fungal pathogens for quarantine on exported cacti. Plant Pathol. J. 2016, 32, 53. [Google Scholar] [CrossRef]
- Chandelier, A.; Massot, M.; Fabreguettes, O.; Gischer, F.; Teng, F.; Robin, C. Early Detection of Cryphonectria parasitica by Real-Time PCR. Eur. J. Plant Pathol. 2019, 153, 29–46. [Google Scholar] [CrossRef]
- Havis, N.D.; Gorniak, K.; Carmona, M.A.; Formento, A.N.; Luque, A.G.; Scandiani, M.M. First molecular detection of Ramularia leaf spot (Ramularia collo-cygni) in seeds and leaves of barley in Argentina. Plant Dis. 2014, 98, 277. [Google Scholar] [CrossRef]
- Pecchia, S.; Caggiano, B.; Da Lio, D.; Cafà, G.; Le Floch, G.; Baroncelli, R. Molecular detection of the seed-borne pathogen Colletotrichum lupini targeting the hyper-variable IGS region of the ribosomal cluster. Plants 2019, 8, 222. [Google Scholar] [CrossRef]
- Konstantinova, P.; Bonants, P.J.; Van Gent-Pelzer, M.P.; Van Der Zouwen, P. Development of Specific Primers for Detection and Identification of Alternaria spp. in Carrot Material by PCR and Comparison with Blotter and Plating Assays. Mycol. Res. 2002, 106, 23–33. [Google Scholar] [CrossRef]
- Ha, Y.; Fessehaie, A.; Ling, K.S.; Wechter, W.P.; Keinath, A.P.; Walcott, R.R. Simultaneous detection of Acidovorax avenae subsp. citrulli and Didymella bryoniae in cucurbit seedlots using magnetic capture hybridization and real-time polymerase chain reaction. Phytopathology 2009, 99, 666–678. [Google Scholar] [CrossRef]
- Depotter, J.R.; Rodriguez-Moreno, L.; Thomma, B.P.; Wood, T.A. The Emerging British Verticillium longisporum Population Consists of Aggressive Brassica Pathogens. Phytopathology 2017, 107, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, D.A.; Ivanova, E.A.; Semenov, M.V.; Zhelezova, A.D.; Ksenofontova, N.A.; Tkhakakhova, A.K.; Kholodov, V.A. Diversity, Ecological Characteristics and Identification of Some Problematic Phytopathogenic Fusarium in Soil: A Review. Diversity 2023, 15, 49. [Google Scholar] [CrossRef]
- Liebe, S.; Christ, D.S.; Ehricht, R.; Varrelmann, M. Development of a DNA Microarray-Based Assay for the Detection of Sugar Beet Root Rot Pathogens. Phytopathology 2016, 106, 76–86. [Google Scholar] [CrossRef]
- Wöhrle, J.; Krämer, S.D.; Meyer, P.A.; Rath, C.; Hügle, M.; Urban, G.A.; Roth, G. Digital DNA Microarray Generation on Glass Substrates. Sci. Rep. 2020, 10, 5770. [Google Scholar] [CrossRef] [PubMed]
- Chalupowicz, L.; Dombrovsky, A.; Gaba, V.; Luria, N.; Reuven, M.; Beerman, A.; Manulis-Sasson, S. Diagnosis of Plant Diseases Using the Nanopore Sequencing Platform. Plant Pathol. 2019, 68, 229–238. [Google Scholar] [CrossRef]
- Potgieter, L.; Feurtey, A.; Dutheil, J.Y.; Stukenbrock, E.H. On variant discovery in genomes of fungal plant pathogens. Front. Microbiol. 2020, 11, 626. [Google Scholar] [CrossRef]
- Huang, J.; Jiang, E.; Yang, D.; Wei, J.; Zhao, M.; Feng, J.; Cao, J. Metagenomic next-generation sequencing versus traditional pathogen detection in the diagnosis of peripheral pulmonary infectious lesions. Infect. Drug Resist. 2020, 13, 567–576. [Google Scholar] [CrossRef]
- Boykin, L.M.; Sseruwagi, P.; Alicai, T.; Ateka, E.; Mohammed, I.U.; Stanton, J.A.L.; Ndunguru, J. Tree lab: Portable genomics for early detection of plant viruses and pests in sub-Saharan Africa. Genes 2019, 10, 632. [Google Scholar] [CrossRef]
- Radhakrishnan, G.V.; Cook, N.M.; Bueno-Sancho, V.; Lewis, C.M.; Persoons, A.; Mitiku, A.D.; Saunders, D.G. MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. BMC Biol. 2019, 17, 65. [Google Scholar] [CrossRef]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, G.L.; MacCannell, D.R.; Taylor, J.; Carleton, H.A.; Neuhaus, E.B.; Bradbury, R.S.; Posey, J.E.; Gwinn, M. Pathogen genomics in public health. N. Engl. J. Med. 2019, 381, 2569–2580. [Google Scholar] [CrossRef] [PubMed]
- Malapi-Wight, M.; Salgado-Salazar, C.; Demers, J.E.; Clement, D.L.; Rane, K.K.; Crouch, J.A. Sarcococca Blight: Use of Whole-Genome Sequencing for Fungal Plant Disease Diagnosis. Plant Dis. 2016, 100, 1093–1100. [Google Scholar] [CrossRef]
- Hubbard, A.; Lewis, C.M.; Yoshida, K.; Ramirez-Gonzalez, R.H.; de Vallavieille-Pope, C.; Thomas, J.; Saunders, D.G. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol. 2015, 16, 23. [Google Scholar] [CrossRef]
- Withers, S.; Gongora-Castillo, E.; Gent, D.; Thomas, A.; Ojiambo, P.S.; Quesada-Ocampo, L.M. Using Next-Generation Sequencing to Develop Molecular Diagnostics for Pseudoperonospora cubensis, the Cucurbit Downy Mildew Pathogen. Phytopathology 2016, 106, 1105–1116. [Google Scholar] [CrossRef]
- Chang, C.C.; Chen, C.C.; Wei, S.C.; Lu, H.H.; Liang, Y.H.; Lin, C.W. Diagnostic Devices for Isothermal Nucleic Acid Amplification. Sensors 2012, 12, 8319–8337. [Google Scholar] [CrossRef]
- Van Beckhoven, J.R.C.M.; Stead, D.E.; Van der Wolf, J.M. Detection of Clavibacter michiganensis subsp. sepedonicus by AmpliDet RNA, a New Technology Based on Real-Time Monitoring of NASBA Amplicons with a Molecular Beacon. J. Appl. Microbiol. 2002, 93, 840–849. [Google Scholar] [CrossRef]
- Heo, S.; Kim, H.R.; Lee, H.J. Development of a quantitative real-time nucleic acid sequence-based amplification (NASBA) assay for early detection of apple scar skin viroid. Plant Pathol. J. 2019, 35, 164. [Google Scholar] [CrossRef]
- Corthell, J.T. In Situ Hybridization. In Basic Molecular Protocols in Neuroscience: Tips, Tricks, and Pitfalls; Academic Press: San Diego, CA, USA, 2014; pp. 105–111. [Google Scholar] [CrossRef]
- Ellison, M.A.; McMahon, M.B.; Bonde, M.R.; Palmer, C.L.; Luster, D.G. In Situ Hybridization for the Detection of Rust Fungi in Paraffin Embedded Plant Tissue Sections. Plant Methods 2016, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Shakoori, A.R. Fluorescence In Situ Hybridization (FISH) and Its Applications. In Chromosome Structure and Aberrations; Springer: Berlin/Heidelberg, Germany, 2017; pp. 343–367. [Google Scholar] [CrossRef]
- Milner, H.; Ji, P.; Sabula, M.; Wu, T. Quantitative Polymerase Chain Reaction (Q-PCR) and Fluorescent In Situ Hybridization (FISH) Detection of Soilborne Pathogen Sclerotium rolfsii. Appl. Soil Ecol. 2019, 136, 86–92. [Google Scholar] [CrossRef]
- Panno, S.; Matić, S.; Tiberini, A.; Caruso, A.G.; Bella, P.; Torta, L.; Davino, S. Loop mediated isothermal amplification: Principles and applications in plant virology. Plants 2020, 9, 461. [Google Scholar] [CrossRef]
- Dong, J.; Feng, W.; Lin, M.; Chen, S.; Liu, X.; Wang, X.; Chen, Q. Comparative evaluation of PCR-based, LAMP and RPA-CRISPR/Cas12a assays for the rapid detection of Diaporthe aspalathi. Int. J. Mol. Sci. 2024, 25, 5773. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, J.A.; Boonham, N.; Dickinson, M. Development and evaluation of a one-hour DNA extraction and loop-mediated isothermal amplification assay for rapid detection of phytoplasmas. Plant Pathol. 2010, 59, 465–471. [Google Scholar] [CrossRef]
- Kaczmarek, A.M.; King, K.M.; West, J.S.; Stevens, M.; Sparkes, D.; Dickinson, M.J. A Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid and Specific Detection of Airborne Inoculum of Uromyces betae (Sugar Beet Rust). Plant Dis. 2019, 103, 417–421. [Google Scholar] [CrossRef]
- Stehlíková, D.; Luchi, N.; Aglietti, C.; Pepori, A.L.; Diez, J.J.; Santini, A. Real-Time Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Fusarium circinatum. Biotechniques 2020, 69, 11–17. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sultana, F.; Rubayet, M.T.; Khan, S.; Mostafa, M.; Mishu, N.J.; Mostofa, M.G. White Mold: A Global Threat to Crops and Key Strategies for Its Sustainable Management. Microorganisms 2024, 13, 4. [Google Scholar] [CrossRef]
- Ordóñez, N.; Salacinas, M.; Mendes, O.; Seidl, M.F.; Meijer, H.J.G.; Schoen, C.D.; Kema, G.H.J. A loop-mediated isothermal amplification (LAMP) assay based on unique markers derived from genotyping by sequencing data for rapid in planta diagnosis of Panama disease caused by Tropical Race 4 in banana. Plant Pathol. 2019, 68, 1682–1693. [Google Scholar] [CrossRef]
- Panno, S.; Ruiz-Ruiz, S.; Caruso, A.G.; Alfaro-Fernandez, A.; San Ambrosio, M.I.F.; Davino, S. Real-time reverse transcription polymerase chain reaction development for rapid detection of Tomato brown rugose fruit virus and comparison with other techniques. PeerJ 2019, 7, e7928. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Bautista, J.A.; Bautista-Baños, S.; Ventura-Aguilar, R.I.; Hernández-López, M. Chitinases in Plants and Possible Use as Biomarkers for the Design of Biosensors in the Detection of Phytopathogenic Fungi. Rev. Mex. Cienc. Agríc. 2022, 13, 701–713. [Google Scholar]
- Goo, N.I.; Kim, D.E. Rolling circle amplification as isothermal gene amplification in molecular diagnostics. Biochip J. 2016, 10, 262–271. [Google Scholar] [CrossRef]
- Gu, L.; Yan, W.; Liu, L.; Wang, S.; Zhang, X.; Lyu, M. Research progress on rolling circle amplification (RCA)-based biomedical sensing. Pharmaceuticals 2018, 11, 35. [Google Scholar] [CrossRef]
- van Emmerik, C.L.; Gachulincova, I.; Lobbia, V.R.; Daniëls, M.A.; Heus, H.A.; Soufi, A.; van Ingen, H. Ramified Rolling Circle Amplification for Synthesis of Nucleosomal DNA Sequences. Anal. Biochem. 2020, 588, 113469. [Google Scholar] [CrossRef]
- Lin, H.; Jiang, X.; Yi, J.; Wang, X.; Zuo, R.; Jiang, Z.; Wang, W.; Zhou, E. Molecular Identification of Neofabraea Species Associated with Bull’s-Eye Rot on Apple Using Rolling-Circle Amplification of Partial EF-1α Sequence. Can. J. Microbiol. 2018, 64, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Davari, M.; van Diepeningen, A.D.; Babai-Ahari, A.; Arzanlou, M.; Najafzadeh, M.J.; van der Lee, T.A.; de Hoog, G.S. Rapid Identification of Fusarium graminearum Species Complex Using Rolling Circle Amplification (RCA). J. Microbiol. Methods 2012, 89, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.; Bader, M.K.F.; Burgess, T.; Hardy, G.; Williams, N. Global Biogeography and Invasion Risk of the Plant Pathogen Genus Phytophthora. Environ. Sci. Policy 2019, 101, 175–182. [Google Scholar] [CrossRef]
- Ristaino, J.B.; Cooke, D.E.; Acuña, I.; Muñoz, M. The threat of late blight to global food security. In Emerging Plant Diseases and Global Food Security; The American Phytopathological Society: Saint Paul, MN, USA, 2020; pp. 101–132. [Google Scholar] [CrossRef]
- Ristaino, J.B. The importance of mycological and plant herbaria in tracking plant killers. Front. Ecol. Evol. 2020, 7, 521. [Google Scholar] [CrossRef]
- Jombart, T.; Cori, A.; Didelot, X.; Cauchemez, S.; Fraser, C.; Ferguson, N. Bayesian Reconstruction of Disease Outbreaks by Combining Epidemiologic and Genomic Data. PLoS Comput. Biol. 2014, 10, e1003457. [Google Scholar] [CrossRef]
- Bieker, V.C.; Martin, M.D. Implications and Future Prospects for Evolutionary Analyses of DNA in Historical Herbarium Collections. Bot. Lett. 2018, 165, 409–418. [Google Scholar] [CrossRef]
- Saville, A.C.; Ristaino, J.B. Global historic pandemics caused by the FAM-1 genotype of the Irish potato pathogen Phytophthora infestans. Sci. Rep. 2021, 11, 12335. [Google Scholar] [CrossRef] [PubMed]
- Gardy, J.L.; Loman, N.J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 2018, 19, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Carisse, O.; Fall, M.L.; Vincent, C. Using a biovigilance approach for pest and disease management in Quebec vineyards. Can. J. Plant Pathol. 2017, 39, 393–404. [Google Scholar] [CrossRef]
- Chen, W.; Newlands, N.; Hambleton, S.; Laroche, A.; Davoodi, S.M.; Bakkeren, G. Optimizing an integrated biovigilance toolbox to study the spatial distribution and dynamic changes of airborne mycobiota, with a focus on cereal rust fungi in western Canada. Mol. Ecol. Resour. 2024, 24, e13983. [Google Scholar] [CrossRef]
- Folasole, A. Data analytics and predictive modelling approaches for identifying emerging zoonotic infectious diseases: Surveillance techniques, prediction accuracy, and public health implications. Int. J. Eng. Technol. Res. Manag. 2023, 7, 292. [Google Scholar] [CrossRef]
- Rahman, A.; Standish, J.R.; D’arcangelo, K.N.; Quesada-Ocampo, L.M. Clade-specific biosurveillance of Pseudoperonospora cubensis using spore traps for precision disease management of cucurbit downy mildew. Phytopathology 2021, 111, 312–320. [Google Scholar] [CrossRef]
- Rahman, A.; Miles, T.D.; Martin, F.N.; Quesada-Ocampo, L.M. Molecular approaches for biosurveillance of the cucurbit downy mildew pathogen, Pseudoperonospora cubensis. Can. J. Plant Pathol. 2017, 39, 282–296. [Google Scholar] [CrossRef]
- Hamelin, R.C.; Bilodeau, G.J.; Heinzelmann, R.; Hrywkiw, K.; Capron, A.; Dort, E.; Feau, N. Genomic bio-surveillance detects a sexual hybrid in the sudden oak death pathogen. Commun. Biol. 2022, 5, 477. [Google Scholar] [CrossRef]
- Carvajal-Yepes, M.; Cardwell, K.; Nelson, A.; Garrett, K.A.; Giovani, B.; Saunders, D.G.; Tohme, J. A Global Surveillance System for Crop Diseases. Science 2019, 364, 1237–1239. [Google Scholar] [CrossRef]
- Vakilian, K.A. Using Networks in Plant Disease Diagnosis. CABI Rev. 2017, 1–12. [Google Scholar] [CrossRef]
- Markell, S.G.; Tylka, G.L.; Anderson, E.J.; van Esse, H.P. Developing Public–Private Partnerships in Plant Pathology Extension: Case Studies and Opportunities in the United States. Annu. Rev. Phytopathol. 2020, 58, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.W.; Hollier, C.A.; Whitam, H.K.; Palm, M.E.; McKemy, J.M.; Hernandez, J.R.; DeVries-Paterson, R. First Report of Soybean Rust Caused by Phakopsora pachyrhizi in the Continental United States. Plant Dis. 2005, 89, 774. [Google Scholar] [CrossRef]
- Hossain, M.M. Pathogenesis and Virulence of Phakopsora pachyrhizi. In CRC Press eBooks; CRC Press: Boca Raton, FL, USA, 2024; pp. 220–242. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sultana, F.; Yesmin, L.; Rubayet, M.T.; Abdullah, H.M.; Siddique, S.S.; Bhuiyan, M.A.B.; Yamanaka, N. Understanding Phakopsora pachyrhizi in Soybean: Comprehensive Insights, Threats, and Interventions from the Asian Perspective. Front. Microbiol. 2024, 14, 1304205. [Google Scholar] [CrossRef] [PubMed]
- Livingston, M.; Johansson, R.; Daberkow, S.; Roberts, M.; Ash, M.; Breneman, V. Economic and Policy Implications of Wind-Borne Entry of Asian Soybean Rust in the United States. In Oil Crop Outlook Report; OCS04D-02; USA Department of Agriculture Economic Research Service: Washington, DC, USA, 2004. Available online: https://ers.usda.gov/sites/default/files/_laserfiche/outlooks/37823/50153_ocs04d02.pdf?v=54405 (accessed on 18 December 2024).
- Sikora, E.J.; Allen, T.W.; Wise, K.W.; Baniecki, J.; Bergstrom, G.; Bradley, C.A.; Bond, J.; Brown-Rytlewski, D.; Chilvers, M.; Damicone, J.; et al. A Coordinated Effort to Manage Soybean Rust in North America: A Success Story in Soybean Disease Monitoring. Plant Dis. 2014, 98, 864–875. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Gupta, D.R.; Hossain, A.; Roy, K.K.; He, X.; Kabir, M.R.; Singh, P.K.; Khan, M.A.R.; Rahman, M.; Wang, G.L. Wheat blast: A new threat to food security. Phytopathol. Res. 2020, 2, 28. [Google Scholar] [CrossRef]
- Yesmin, N.; Jenny, F.; Abdullah, H.M.; Hossain, M.M.; Kader, M.A.; Solomon, P.S.; Bhuiyan, M.A. A review on South Asian wheat blast: The present status and future perspective. Plant Pathol. 2020, 69, 1618–1629. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Boonekamp, P.M.; Hutten, R.; Jacobsen, E.; Lotz, L.A.P.; Kessel, G.J.T.; Vossen, J.H.; Visser, R.G.F. Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: Scientific and societal advances in the DuRPh project. Potato Res. 2016, 59, 35–66. [Google Scholar] [CrossRef]
- Reem, A.; Almezgagi, M.; Al-Shaebi, F.; Al-Shehari, W.A.; Kumal, J.P.P. Application of rolling circle amplification (RCA) to detect the pathogens of infectious diseases. Infect. Dis. Diagn. Treat. 2020, 4, 158. [Google Scholar]
- Silva Zatti, M.; Domingos Arantes, T.; Cordeiro Theodoro, R. Isothermal Nucleic Acid Amplification Techniques for Detection and Identification of Pathogenic Fungi: A Review. Mycoses 2020, 63, 1006–1020. [Google Scholar] [CrossRef]
- Lau, H.Y.; Botella, J.R. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Disease Detection. Front. Plant Sci. 2017, 8, 2016. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Y.; Han, S.; Lv, L.; Li, L. Next-Generation Sequencing Applications for the Study of Fungal Pathogens. Microorganisms 2022, 10, 1882. [Google Scholar] [CrossRef]
Tools | Application | Uses | Benefits | Cost-Effectiveness | References |
---|---|---|---|---|---|
Remote Sensing | Hyperspectral imaging, satellite imagery, UAVs/drones |
|
| High initial setup cost (equipment, data access); low per-unit operational cost; cost-effective for regional/national scale but less accessible for smallholders | [32] |
Lab-Based Techniques | PCR, NASBA, microarray, High-Throughput Sequencing (HTS) |
|
| High cost and lab infrastructure required; most feasible for centralized labs, universities, or research institutes | [33,34] |
Field-Applicable/Portal Tools | LAMP, qLAMP, RCA, smartphone-based VOC sensors, wearable & wireless biosensors, portable MinION sequencer |
|
| Low to moderate cost; LAMP and smartphone-based tools are affordable; wearable sensors have a higher development cost but offer added precision and immediacy | [35,36,37] |
Data mining/big data analysis/metagenomics | Natural language processing (NLP), geoparsing, social media mining, environmental data integration, and metagenomic analysis |
|
| Moderate cost depending on computational capacity; cost-effective when integrated into national surveillance systems; long-term benefits via predictive and precision agriculture strategies | [38,39,40] |
PCR Technique | Description | Application | Cost-Effectiveness | References |
---|---|---|---|---|
End-point PCR | Uses universal or specialized primers to amplify fungal DNA, followed by sequencing. | Diagnosing Sphaeropsis pyriputrescens and Phacidiopycnis washingtonensis in apples. | Cost-effective for routine diagnostics but has lower sensitivity and may require additional sequencing, increasing total costs. | [47] |
Nested PCR | Involves two rounds of amplification with two sets of primers, enhancing sensitivity and specificity | Detecting twig blight and crown rot (Pilidiella granati) in pomegranate with high sensitivity | High sensitivity reduces false negatives, but extra amplification steps increase reagent and labor costs | [48] |
Multiplex PCR | Simultaneously detects multiple pathogens in one reaction, saving time and costs | Detecting 12 fungal pathogens in cranberries and Fusarium oxysporum and Phytophthora in cacti | Reduces costs by consolidating multiple tests into one, but requires specialized primer design and optimization | [49,50] |
qPCR (Quantitative PCR) | Real-time quantification and detection of fungal DNA/RNA, providing a measure of pathogen load | Detecting Cryphonectria parasitica in chestnuts and Ramularia collo-cygni in barley seeds | Higher upfront equipment costs, but offers rapid, sensitive, and quantitative data, reducing long-term diagnostic costs | [51,52] |
BIO-PCR | Incorporates a pre-assay incubation stage to increase pathogen biomass and improve sensitivity | Diagnosing Colletotrichum lupini in lupin seeds and Alternaria alternata in seed-borne diseases | Cost-effective for low-concentration pathogens but requires additional incubation time, delaying results | [53,54] |
MCH-PCR (Magnetic Capture Hybridization PCR) | Uses magnetic beads to capture DNA from pathogens, reducing PCR inhibitors and non-target DNA interference | Identifying Acidovorax avenae and Didymella bryoniae in cucurbit seeds | More expensive due to specialized reagents, but improves detection in samples with PCR inhibitors, reducing false negatives | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultana, F.; Mostafa, M.; Ferdus, H.; Ausraf, N.; Hossain, M.M. Tackling Threats from Emerging Fungal Pathogens: Tech-Driven Approaches for Surveillance and Diagnostics. Stresses 2025, 5, 56. https://doi.org/10.3390/stresses5030056
Sultana F, Mostafa M, Ferdus H, Ausraf N, Hossain MM. Tackling Threats from Emerging Fungal Pathogens: Tech-Driven Approaches for Surveillance and Diagnostics. Stresses. 2025; 5(3):56. https://doi.org/10.3390/stresses5030056
Chicago/Turabian StyleSultana, Farjana, Mahabuba Mostafa, Humayra Ferdus, Nur Ausraf, and Md. Motaher Hossain. 2025. "Tackling Threats from Emerging Fungal Pathogens: Tech-Driven Approaches for Surveillance and Diagnostics" Stresses 5, no. 3: 56. https://doi.org/10.3390/stresses5030056
APA StyleSultana, F., Mostafa, M., Ferdus, H., Ausraf, N., & Hossain, M. M. (2025). Tackling Threats from Emerging Fungal Pathogens: Tech-Driven Approaches for Surveillance and Diagnostics. Stresses, 5(3), 56. https://doi.org/10.3390/stresses5030056