Assessment of the Impact of Climate Change on the Potential Distributions of Melliferous Plant Species on the Yucatan Peninsula, Mexico: Implications for Conservation Planning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Melliferous Plant Species Selection
2.3. Environmental Variables
2.4. Ecological Niche Models
3. Results
3.1. Model Evaluation and Variable Contributions
3.2. Species Richness Patterns
3.3. Changes to Suitable Areas
3.4. Habitat Suitability of Vulnerable Melliferous Plant Species
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Species | Current (km2) | SSP 245 | SSP 585 | ||||
---|---|---|---|---|---|---|---|
Gain (km2) | Stable (km2) | Loss (km2) | Gain (km2) | Stable (km2) | Loss (km2) | ||
Acacia angustissima (Mill.) Kuntze | 66,481.3 | 58,901.5 | 51,519 | 1428.6 | 7024 | 730.9 | 65,750.3 |
Aeschynomene americana L. | 142,631 | 9019 | 142,631 | 149 | 783 | 141,848 | |
Albizia lebbeck (L.) Benth. | 117,920 | 28,572 | 115,481 | 2439 | 30159 | 45,282 | 72,638 |
Albizia tomentosa (Micheli) Standl. | 131,742 | 18,508 | 130,741 | 1001 | 6797 | 4109 | 127,633 |
Allophylus cominia (L.) Sw. | 123,438 | 16,014 | 118,952 | 4486 | 18,064.2 | 9629.1 | 113,808.8 |
Ambrosia hispida Pursh | 21,294.3 | 11,137 | 20,611.3 | 683 | 9144 | 18,617 | 2677.3 |
Azadirachta indica A. Juss. | 8817 | 16,823.4 | 6952.3 | 1911.6 | 35,049.6 | 8746.4 | 70.5 |
Bauhinia divaricata L. | 124,134.3 | 7965 | 85,318 | 38,816.3 | 17,862.5 | 90,898.5 | 33,235.7 |
Bauhinia herrerae (Britton & Rose) Standl. & Stayer. | 119,738 | 31,122.7 | 119,501.5 | 236.5 | 10,174.9 | 99,149 | 20,589 |
Bignonia diversifolia Kunth | 116,774.6 | 27,065 | 114,531.7 | 2242.9 | 57,733.3 | 24,263.6 | 42,653 |
Brosimum alicastrum Sw. | 105,793.7 | 27,939 | 92,726.8 | 13,066.9 | 23,963.8 | 81,829.9 | |
Bursera simaruba (L.) Sarg. | 148,847.8 | 136,326.5 | 12,521.2 | 25,759 | 123,088.8 | ||
Byrsonima bucidifolia Standl. | 114,188 | 25,182.5 | 113,554 | 634 | 6985.6 | 71,293.9 | 42,894.1 |
Cassia fistula L. | 62,293.7 | 73,429 | 35,118.6 | 27,175.1 | 18,881.2 | 43,412.5 | |
Cedrela odorata L. | 112,162 | 30,984 | 110,325 | 1837 | 30,729 | 103,998.7 | 8163.2 |
Ceiba pentandra (L.) Gaertn. | 66,527.3 | 55,242 | 63,564.5 | 2962.8 | 72,951 | 57,261 | 9266.3 |
Chrysophyllum mexicanum Brandegee ex Standl. | 145,319 | 5061 | 144,767 | 552 | 2212 | 33,359.3 | 111,959.6 |
Cissus verticillata (L.) Nicolson & C.E. Jarvis | 139,576.5 | 10,936.5 | 139,457.5 | 119 | 11,271 | 36,321 | 103,255.5 |
Cnidoscolus souzae McVaugh | 98,524 | 32,829 | 63242.8 | 7373.1 | 11,560 | 2495 | 96,029 |
Coccoloba uvifera (L.) L. | 16,195.9 | 8615 | 9269.6 | 6926.3 | 15,016.2 | 8296 | 7899.9 |
Cordia gerascanthus L. | 62,971.6 | 34,792.4 | 62,971.6 | 25,466.7 | 3367.3 | 59,604.3 | |
Cordia sebestena L. | 13,834.6 | 22,198 | 13,463.3 | 371.3 | 58,765 | 234.7 | 135,99.9 |
Cornutia pyramidata L. | 75,611.7 | 38,466.3 | 75,611.7 | 15,953 | 5447.3 | 17,601.3 | |
Crescentia cujete L. | 78,058.6 | 73,848.4 | 77,645.6 | 413 | 29,260.3 | 1666 | 75,392.6 |
Croton glabellus L. | 123,951 | 10,799 | 116,587 | 7364 | 16,021 | 102,239 | 21,712 |
Croton icche Lundell | 82,226 | 52,095 | 82,226 | 35,647 | 44,833 | 37,393 | |
Croton reflexifolius Kunth | 140,378 | 10,919 | 139,138 | 1240 | 731 | 5502 | 134,876 |
Dalbergia glabra (Mill.) Standl. | 123,296 | 23,115.9 | 120,489 | 2837 | 19,178 | 77,365.4 | 45,960.5 |
Diospyros cuneata Standl. | 113,233 | 38,282 | 113,233 | 5203 | 343 | 112,890 | |
Distimake dissectus (Jacq.) A.R. Simoes & Staples | 32,529.33 | 113,064.6 | 32,529.3 | 7474 | 32,529.3 | ||
Ehretia tinifolia L. | 82,306 | 20,026 | 77,745.7 | 4560.3 | 64,447 | 32,086 | 50,220 |
Enterolobium cyclocarpum (Jacq.) Griseb. | 86,486.8 | 29,745.2 | 85,210.6 | 1276.2 | 52,567.4 | 39,012.8 | 47,474 |
Erythrostemon yucatanensis (Greenm.) Gagnon & G.P. Lewis | 92,816 | 7042 | 66,018 | 26,798 | 4377 | 15,112 | 77,704 |
Eugenia axillaris (Sw.) Willd. | 98,700.5 | 21,322 | 90,414 | 8286.5 | 33,362 | 81,963.2 | 16,737.3 |
Eugenia winzerlingii Standl. | 81,167 | 33,564 | 79,111 | 2056 | 26,099 | 55,015 | 261,52 |
Exothea diphylla (Standl.) Lundell | 128,711 | 6083 | 124,393 | 4318 | 22,468 | 63,964 | 64,747 |
Gliricidia sepium (Jacq.) Kunth ex Walp. | 138,147.2 | 12,063 | 135,886.9 | 2260.3 | 15,816 | 102,432.2 | 35,715 |
Gouania lupuloides (L.) Urb. | 72,115 | 68,242.1 | 72,115 | 25,012.4 | 604 | 71,511 | |
Guazuma ulmifolia Lam. | 100,702 | 43,996 | 99,131 | 1571 | 44,109.2 | 68,540 | 32,162 |
Guettarda combsii Urb. | 68,918 | 12,264 | 67,543.5 | 1374.5 | 47,996 | 35,977 | 32,941 |
Gymnanthes lucida Sw. | 37,411 | 63,537 | 35,721.3 | 1687.7 | 66,937.7 | 3500.9 | 33,908.1 |
Gymnopodium floribundum Rolfe | 150,491 | 89,456.8 | 61,034.2 | 91,218 | 59,273 | ||
Haematoxylum campechianum L. | 151,515 | 66,816.3 | 846,98.6 | 28,762.3 | 122,752.6 | ||
Hampea trilobata Standl. | 117,743 | 27,474 | 113,766 | 3977 | 22,019.7 | 103,206.8 | 14,536.2 |
Havardia platyloba (Berteru ex DC.) Britton & Rose | 77,717 | 37,349 | 76,753 | 964 | 14,540.2 | 73,019 | 4698 |
Ipomoea carnea Jacq. | 100,238 | 86,325 | 57,409 | 1765 | 22,384 | 16,682 | 83,556 |
Ipomoea corymbosa (L.) Roth ex Roem. | 148,119.8 | 2553.1 | 49,132.3 | 98,987.5 | 3074 | 42,815 | 105,304.8 |
Ipomoea crinicalyx S. Moore | 81,602 | 60,226.4 | 81,504.9 | 97.1 | 305,66 | 11,654.8 | 69,947.2 |
Jacquemontia pentantha G. Don | 133,249 | 16,042.5 | 56,030 | 77,219 | 3001.9 | 5022.8 | 128,226.1 |
Lonchocarpus hondurensis Benth. | 129,623.2 | 21,891.8 | 129,063.2 | 560 | 20,596.8 | 94,139.8 | 35,483.4 |
Lonchocarpus punctatus Kunth | 94,271.9 | 52,070.4 | 92,762.1 | 1509.8 | 5424 | 3465.7 | 90,806.2 |
Lonchocarpus rugosus Benth. | 119,069 | 14,516 | 105,070 | 13,999 | 18,352 | 17,533 | 101,536 |
Luehea speciosa Willd. | 76,503.6 | 63,586.3 | 76,218.6 | 285 | 29,343 | 4793 | 71,710.6 |
Lysiloma latisiliquum (L.) Benth. | 115,431 | 26,561 | 111,248.5 | 4182.5 | 28,908 | 59,795 | 55,636 |
Machaonia lindeniana Baill. | 61,104 | 57,093 | 60,938.3 | 165.7 | 14,383.6 | 27,786 | 33,318 |
Metopium brownei (Jacq.) Urb. | 93,537 | 52,532 | 93,537 | 567,03 | 81,602 | 11,935 | |
Milleria quinqueflora L. | 85,735 | 19,948 | 81,221 | 4514 | 26,683 | 31,279 | 54,456 |
Mimosa bahamensis Benth. | 118,513 | 23,356 | 116,207 | 2306 | 23,020 | 20,635.3 | 97,877.7 |
Mimosa pudica L. | 53,602.2 | 69,192.1 | 53,533.8 | 68.4 | 9544.4 | 36,483 | 17,122.2 |
Murraya paniculata (L.) Jack. | 95,700 | 50,273 | 80,177.8 | 15,522.2 | 48,979 | 20,640.4 | 75,059.5 |
Neomillspaughia emarginata (H. Gross) S.F. Blake | 113,599 | 35,597 | 113,599 | 7946 | 1732 | 111,867 | |
Operculina pinnatifida (Kunth) O’Donell | 48,485 | 88,769 | 48,185 | 33,399 | 48,185 | ||
Phithecellobium albicans (Kunth) Benth. | 75,761 | 36,277 | 75,761 | 38,658 | 18,194 | 57,567 | |
Phyllanthus brasiliensis (Aubl.) Poir. | 64,497 | 62,601 | 63,008 | 1489 | 45,412 | 5163.4 | 59,333.6 |
Piscidia piscipula (L.) Sarg. | 148,189 | 94.8 | 96,604.9 | 51584.1 | 88,600 | 59,589 | |
Pisonia aculeata L. | 103,334 | 44,300 | 103,334 | 40,688 | 57,174 | 46,160 | |
Platymiscium yucatanum Standl. | 68,792 | 81,759 | 68,792 | 11,686 | 68,792 | ||
Pluchea carolinensis (Jacq.) G. Don | 103,321.3 | 46,579.7 | 103,115.3 | 206 | 33,222 | 39,947.3 | 63,373.9 |
Polanisia viscosa (L.) DC. | 23,098.8 | 3869.3 | 21,901.8 | 1197 | 27,041 | 23,098.8 | |
Poutenia campechiana (Kunth) Baehni | 83,002 | 17,656 | 77,404 | 5598 | 13,337 | 66,009 | 16,993 |
Pseudobombax ellipticum (Kunth) Dugan | 113,210.7 | 36,320 | 112,188.7 | 1022 | 37,301.1 | 82,102.7 | 31,108 |
Psidium sartorianum (O. Berg.) Nied. | 110,481.8 | 41,033.2 | 110,481.8 | 19,056 | 7508 | 102,973.8 | |
Ruellia ciliatiflora Hook. | 120,124 | 27,347 | 118,760 | 1364 | 11,850 | 14,607 | 116,989 |
Ruellia inundata Kunth | 81,718 | 14,743 | 72,183 | 9555 | 42,245 | 7391 | 74,327 |
Sabal mexicana Mart. | 117,060 | 32,087 | 114,747 | 2313 | 29,115 | 12,424.6 | 104,635.4 |
Sabal yapa C. Wright ex Becc. | 80,422 | 35,947.3 | 75,432 | 4990 | 51,420.3 | 75,143.4 | 5278.5 |
Scaevola plumieri (L.) Vahl | 129,971 | 19,963 | 119,785 | 10,186 | 6073 | 79,003.6 | 50,967.3 |
Schoepfia schreberi J.F. Gmel. | 128,529.6 | 22,985.4 | 128,529.6 | 6962.9 | 8015 | 120,514.6 | |
Senegalia gaumeri (S.F. Blake) | 74,436 | 69,979 | 74,436 | 65,240 | 22,259 | 52,177 | |
Serjania yucatanensis Standl. | 56,542.7 | 30,704 | 37,999.7 | 18,543 | 46,489 | 33,879.7 | 22,663 |
Sideroxylon salicifolium (L.) Lam | 77,452.9 | 31,132.8 | 76,416.9 | 1036 | 37,146.4 | 56,890.7 | 20,562.2 |
Stachytarpheta jamaicensis (L.) Vahl | 93,882.7 | 42,750.6 | 85,475.8 | 26.7 | 44,744 | 25,607.7 | 68,275 |
Swartzia cubensii (Britton & P. Wilson) Standl. | 20,381 | 48,943.3 | 15,490.6 | 4890.4 | 85,690.2 | 17,374.8 | 34.8 |
Tabebuia rosea (Bertol.) DC. | 76,924 | 72,664 | 75,968.8 | 955.2 | 54,278.7 | 64,167.3 | 12,756.7 |
Talisia floresii Standl. | 107,574 | 34,574 | 107,064 | 510 | 33,941 | 20,439 | 87,135 |
Tecoma stans (L.) Juss. ex Kunth | 61,207.5 | 31,654.2 | 52,989.5 | 8218 | 58,342 | 19,471.5 | 41,736 |
Terminalia buceras (L.) C. Wright | 144,004.9 | 61,340.9 | 82,664 | 74,539 | 69,465.9 | ||
Thouinia paucidentata Radlk. | 101,792.3 | 27,489 | 94,047.3 | 7745 | 26,717 | 73,975 | 27,817.3 |
Trema micranthum (L.) Blume | 62,962.7 | 40,998.9 | 61,478 | 1484.7 | 58,796.3 | 61,907.7 | 1055 |
Verbesina gigantea Jacq. | 62,962.7 | 40,998.9 | 61,478 | 1484.7 | 58,796.3 | 61,907.7 | 1055 |
Viguiera dentata (Cav.) Spreng. | 149,974 | 114,684.7 | 35,289.2 | 79,225 | 40,934.6 | ||
Vitex gaumeri Greenm. | 145,920.7 | 23,377.1 | 122,543 | 51.3 | 77,294.8 | 68,625.9 |
References
- Rocha, J.; Oliveira, S.; Viana, C.M.; Ribeiro, A.I. Climate change and its impacts on health, environment and economy. In One Health; Prata, J.C., Ribeiro, A.I., Rocha-Santos, T., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 253–279. [Google Scholar] [CrossRef]
- Baena-Díaz, F.; Chévez, E.; Ruiz, F.; Porter-Bolland, L. Apis mellifera in Mexico: Honey production, melliferous flora and pollination aspects. Review. Rev. Mex. Cienc. Pecu. 2022, 13, 525–548. [Google Scholar] [CrossRef]
- Zúñiga-Díaz, D.; Cetzal-Ix, W.; López-Castilla, H.; Noguera-Savelli, E.; Tamayo-Cen, I.; Martínez-Puc, J.F.; Basu, S.K. A review of the melliferous flora of Yucatan peninsula, Mexico, on the basis for the honey production cycle. J. Ethnobiol. Ethnomed. 2024, 20, 40. [Google Scholar] [CrossRef]
- Kelly, A.E.; Goulden, M.L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 2008, 105, 11823–11826. [Google Scholar] [CrossRef] [PubMed]
- Faust, M.N.; Iler, A.M. Pollinator-mediated reproductive consequences of altered co-flowering under climate change conditions depend on abiotic context. Clim. Chang. Ecol. 2022, 3, 100043. [Google Scholar] [CrossRef]
- Trunschke, J.; Junker, R.R.; Kudo, G.; Alexander, J.M.; Richman, S.K.; Till-Bottraud, I. Effects of climate change on plant-pollinator interactions and its multitrophic consequences. Alp. Bot. 2024, 134, 115–121. [Google Scholar] [CrossRef]
- Nicholls, C.I.; Altieri, M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 2013, 33, 257–274. [Google Scholar] [CrossRef]
- Krishnan, S.; Wiederkehr-Guerra, G.; Bertrand, D.; Wertz-Kanounnikoff, S.; Kettle, C.J. The Pollination Services of Forests—A Review of Forest and Landscape Interventions to Enhance Their Cross-Sectoral Benefits; Forestry Working Paper No. 15; FAO & Biodiversity International: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Global Action on Pollination Services for Sustainable Agriculture. 2025. Available online: https://www.fao.org/pollination/about/en#:~:text=Bees%20and%20other%20pollinators&text=About%2075%25%20of%20global%20food,and%20pollination%20services%20are%20declining (accessed on 10 March 2024).
- Gérard, M.; Vanderplanck, M.; Wood, T.; Michez, D. Global warming and plant–pollinator mismatches. Emerg. Top. Life Sci. 2020, 4, 77–86. [Google Scholar] [CrossRef]
- Plos, C.; Stelbrink, N.; Römermann, C.; Knight, T.M.; Hensen, I. Abiotic conditions affect nectar properties and flower visitation in four herbaceous plant species. Flora 2023, 303, 152279. [Google Scholar] [CrossRef]
- IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services). Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J., Vanbergen, A.J., et al., Eds.; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016. [Google Scholar]
- Flores, L.M.A.; Zanette, L.R.S.; Boscolo, D.; Araújo, F.S. Landscape structure effects on bee and wasp assemblages in a semiarid buffer zone. Landsc. Online 2019, 76, 1–17. [Google Scholar] [CrossRef]
- Walters, J.; Barlass, M.; Fisher, R.; Isaacs, R. Extreme heat exposure of host plants indirectly reduces solitary bee fecundity and survival. Proc. R. Soc. B Biol. Sci. 2024, 291, 20240714. [Google Scholar] [CrossRef]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Shivanna, K.R. Climate change and its impact on biodiversity and human welfare. Proc. Indian Natl. Sci. Acad. 2022, 88, 160–171. [Google Scholar] [CrossRef]
- Furtak, K.; Wolińska, A. The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture—A review. Catena 2023, 231, 107378. [Google Scholar] [CrossRef]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response mechanism of plants to drought stress. Horticulture 2021, 7, 50. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Rafferty, N.E. Effects of global change on insect pollinators: Multiple drivers lead to novel communities. Cur. Opin. Insect Sci. 2017, 23, 22–27. [Google Scholar] [CrossRef]
- Genes, L.; Dirzo, R. Restauration of plant-animal, interactions in terrestrial ecosystems. Biol. Conserv. 2022, 265, 109393. [Google Scholar] [CrossRef]
- Cariveau, D.P.; Bruninga-Bruninga, B.; Pardee, G.L. A review of the challenges and opportunities for restoring animal-mediated pollination of native plants. Emerg. Top. Life Sci. 2020, 4, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Mirzabaev, A.; Olsson, L.; Kerr, R.B.; Pradhan, P.; Ferre, M.G.R.; Lotze-Campen, H. Climate Change and Food Systems. In Science and Innovations for Food Systems Transformation; von Braun, J., Afsana, K., Fresco, L.O., Hassan, M.H.A., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Devkota, K.; Ferreira, A.B.; Timberlake, T.P.; dos Santos, C.F. The impact of pollinator decline on global protein production: Implications for livestock and plant-based products. Glob. Ecol. Conserv. 2024, 50, e02815. [Google Scholar] [CrossRef]
- Lowicki, D.; Fagiewicz, K. A new model of pollination services potential using a landscape approach: A case study of post-mining area in Poland. Ecosyst. Serv. 2021, 52, 101370. [Google Scholar] [CrossRef]
- Balvino-Olvera, F.J.; Olivares-Pinto, U.; González-Rodríguez, A.; Aguilar-Aguilar, M.J.; Ruiz-Guzmán, G.; Lobo-Segura, J.; Cortés-Flores, J.; Cristobal-Perez, E.J.; Martén-Rodríguez, S.; Patiño-Conde, V.; et al. Effects of floral resources on honey bee populations in Mexico: Using dietary metabarcoding to examine landscape quality in agroecosystems. Ecol. Evol. 2024, 14, e11456. [Google Scholar] [CrossRef]
- Landaverde, R.; Rodríguez, M.T.; Parrella, J.A. Honey production and climate change: Beekeepers’ perceptions, farm adaptation strategies, and information needs. Insects 2023, 14, 493. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.G.; Dawson, T.P.; Liu, C. Modelling species distributions in Britain: A hierarchical integration of climate and land-cover data. Ecography 2004, 27, 285–298. [Google Scholar] [CrossRef]
- Buckley, L.B.; Waaser, S.A.; MacLean, H.J.; Fox, R. Does including physiology improve species distribution model predictions of responses to recent climate change? Ecology 2011, 92, 2214–2221. [Google Scholar] [CrossRef]
- Moor, H.; Hylander, K.; Norberg, J. Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. Ambio 2015, 44 (Suppl. S1), 113–126. [Google Scholar] [CrossRef]
- Yin, X.; Jarvie, S.; Guo, W.-Y.; Deng, T.; Mao, L.; Zhang, M.; Chu, C.; Qian, H.; Suenning, J.-C.; He, F. Niche overlap and divergence times support niche conservatism in eastern Asia-eastern North America disjunt plants. Glob. Ecol. Conserv. 2021, 30, 1990–2003. [Google Scholar] [CrossRef]
- Araújo, M.B.; Anderson, R.P.; Barbosa, A.M.; Beale, C.M.; Dormann, C.F.; Early, R.; Garcia, R.A.; Guisan, A.; Maiorano, L.; Naimi, B.; et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 2019, 5, eaat4858. [Google Scholar] [CrossRef] [PubMed]
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Melo-Merino, S.M.; Reyes-Bonilla, H.; Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 2020, 415, 108837. [Google Scholar] [CrossRef]
- Ferraz, K.M.P.M.d.B.; Morato, R.G.; Bovo, A.A.A.; da Costa, C.O.R.; Ribeiro, Y.G.G.; de Paula, R.C.; Desbiez, A.L.J.; Angelieri, C.S.C.; Traylor-Holzer, K. Bridging the gap between researchers, conservation planners, and decision makers to improve species conservation decision-making. Conserv. Sci. Pract. 2021, 3, e330. [Google Scholar] [CrossRef]
- Thapa, A.; Wu, R.; Hu, Y.; Nie, Y.; Singh, P.B.; Khatiwada, J.R.; Yan, L.I.; Gu, X.; Wei, F. Predicting the potential distribution of the endangered red panda across its entire range using MaxEnt modeling. Ecol. Evol. 2018, 8, 10542–10554. [Google Scholar] [CrossRef]
- Zhang, Z.; Mammola, S.; McLay, C.L.; Capinha, C.; Yokota, M. To invade or not to invade? Exploring the niche-based processes underlying the failure of a biological invasion using the invasive Chinese mitten crab. Sci. Total Environ. 2020, 728, 138815. [Google Scholar] [CrossRef]
- Morrone, J.J. Hacia una síntesis biogeográfica de México. Rev. Mex. Biodivers. 2005, 76, 207–252. [Google Scholar] [CrossRef]
- Duno de Stefano, R. El conocimiento florístico de la Península de Yucatán, México, actualización y colecciones botánicas. Polibotánica 2017, 44, 39–50. [Google Scholar]
- Fernández-Carnevali, G.C.; Tapia-Muñoz, J.L.; Duno de Stefano, R.; Ramírez-Morillo, I.M.; Can-Itzá, L.; Hernández-Aguilar, S.; Castillo, A. La Flora de la Península de Yucatán Mexicana: 250 años de conocimiento florístico. Biodiversitas 2012, 101, 6–10. [Google Scholar]
- Velázquez-Rentería, C.A. Flora y apicultura en la Península de Yucatán. Cienc. Desarro. 2011, 237, 42–45. [Google Scholar]
- Elith, J.; Leathwick, J. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Uchiyama, K.; Ujino-Ihara, T.; Nakao, K.; Toriyama, J.; Hashimoto, S.; Tsumura, Y. Climate-Associated genetic variation and projected genetic offsets for Cryptomeria japonica D. Don under future climate scenarios. Evol. Appl. 2025, 18, e70077. [Google Scholar] [CrossRef] [PubMed]
- Bhat, I.A.; Fayaz, M.; Qadir, R.U.; Rafiq, S.; Guleria, K.; Qadir, J.; Wani, T.A.; Kaloo, Z.A. Predicting potential distribution and range dynamics of Aquilegia fragrans under climate change: Insights from ensemble species distribution modelling. Environ. Monit. Assess. 2023, 195, 623. [Google Scholar] [CrossRef] [PubMed]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen; Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2004. [Google Scholar]
- Schmitter-Soto, J.J.; Comín, F.A.; Escobar-Briones, E.; Herrera-Silveira, J.; Alcocer, J.; Suárez-Morales, E.; Elías-Gutiérrez, M.; Díaz-Arce, V.; Marín, L.E.; Steinich, B. Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia 2002, 467, 215–228. [Google Scholar] [CrossRef]
- Orellana, R.; García de Miranda, E.; Bañuelos, I.; Balam, M.; González-Iturbe, J.A.; Herrera, F.; Vidal, J. Climatología de la Península de Yucatán (1961–1993). In Atlas de Procesos Territoriales de Yucatán; García de Fuentes, A.J., Córdoba, A.J., Chico, P., Eds.; Universidad Autónoma de Yucatán-CONACYT: Mérida, Mexico, 1999; pp. 163–182. [Google Scholar]
- Duran-García, R.; Méndez-González, M.; Larque-Saavedra, A. The biodiversity of the Yucatan Peninsula: A natural laboratory. In Progress in Botany; Canovas, F., Luttge, U., Matyssek, R., Eds.; Springer: Cham, Switzerland, 2016; pp. 237–258. [Google Scholar] [CrossRef]
- Flores, J.S.; Espejel, I.C. Tipos de vegetación de la Península de Yucatán. In Etnoflora Yucatanense; Flores, J.S., Ed.; Universidad Autónoma de Yucatán: Mérida, Mexico, 1994; pp. 1–135. [Google Scholar]
- Rzedowski, J. Vegetación de México; Conabio: Ciudad de México, Mexico, 2006.
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 2017, 67, 534–545. [Google Scholar] [CrossRef]
- Sousa-Novelo, N.; Suárez-Molina, V.M.; Barrera-Vázquez, A. Plantas Melíferas y Poliníferas de Yucatán; Fondo Editorial de Yucatán: Mérida, Mexico, 1981.
- Villanueva-Gutiérrez, R.; Moguel-Ordóñez, Y.B.; Echazarreta-González, C.M.; Arana-López, G. Monofloral honeys in the Yucatan Peninsula, Mexico. Grana 2009, 48, 214–223. [Google Scholar] [CrossRef]
- Villanueva-Gutiérrez, R.; Roubik, D.W.; Porter-Bolland, L. Bee–Plant Interactions: Competition and Phenology of Flowers Visited by Bees. In Biodiversity and Conservation of the Yucatan Peninsula; Islebe, G., Calmé, S., León-Cortés, J., Schmook, B., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Carnevali, G.; Ramírez-Morillo, I.; González-Iturbe, J. Flora y vegetación de la Península de Yucatán. In Naturaleza y Sociedad del Área Maya: Pasado, Presente y Futuro; Colunga-García-Marín, P., Larqué-Saavedra, A., Eds.; Centro de Investigación Científica de Yucatán: Mérida, Mexico, 2003; pp. 53–68. [Google Scholar]
- Carnevali, G.; Tapia, J.L.; Duno de Stefano, R.; Ramírez, I. Flora Ilustrada de la Península de Yucatán: Listado Florístico; Centro de Investigación Científica de Yucatán A.C.: Mérida, Mexico, 2010. [Google Scholar]
- Porter-Bolland, L. La apicultura y el paisaje maya. Estudio sobre la fenología de floración de las especies melíferas y su relación con el ciclo apícola en la Montaña, Campeche, México. Estud. Mex. 2003, 19, 303–330. [Google Scholar] [CrossRef]
- Porter-Bolland, L. Estudio de caso: Flora melífera de Campeche. In La Biodiversidad en Campeche Estudio de Estado; Conabio, Gobierno del Estado de Campeche; Conabio: Ciudad de México, Mexico, 2010; pp. 462–465. [Google Scholar]
- Porter-Bolland, L.; Medina, M.E.; Montoy, J.A.; Montoy, P.; Martin, G.; May, G. Flora Melífera de La Montaña, Campeche: Su Importancia Para la Apicultura y Para la Vida Diaria; CONABIO, Instituto de Ecología, A.C.: Xalapa, Mexico, 2009.
- Alfaro-Bates, R.G.; Ortiz Díaz, J.J.; González-Acereto, J.A. Plantas melíferas: Melisopalinología. In Biodiversidad y Desarrollo Humano en Yucatán; Durán-García, R., Méndez-González, M., Eds.; Centro de Investigación Científica de Yucatán A.C.: Mérida, Mexico, 2010; pp. 346–348. [Google Scholar]
- Villanueva-Gutiérrez, R. Pollen sources of European and Africanized honeybees in the eastern Yucatan Peninsula, Mexico. J. Apic. Res. 1999, 38, 105–111. [Google Scholar] [CrossRef]
- Villanueva-Gutiérrez, R. Polliniferous plants and foraging strategies of Apis mellifera (Hymenoptera: Apidae) in the Yucatan Peninsula, Mexico. Rev. Biol. Trop. 2002, 50, 1035–1043. [Google Scholar]
- Flores-Guido, J.S.; Vermont-Ricalde, R. La vegetación de la península de Yucatán y su miel. In La Miel y las Abejas; Secretaría de Educación, Ed.; Secretaría de Educación del Gobierno del Estado de Yucatán: Mérida, Mexico, 2011; pp. 31–64. [Google Scholar]
- Ramos-Díaz, A.; San Román-Ávila, D.; Noriega-Trejo, R.; Góngora-Chin, R.; Sánchez-Contreras, A.; Rodríguez-Buenfil, I. Catálogo de los Principales Tipos Polínicos Encontrados en las Mieles Producidas en la Península de Yucatán; Universidad Autónoma de Campeche: Campeche, Mexico, 2015. [Google Scholar]
- Castillo-Cázares, A.V.; Moguel, Y.B.; Cortés, M.A.; Espinosa, E.; Arechavaleta, M.E.; Mora, M.A. Composición botánica de mieles de la Península de Yucatán, mediante qPCR y análisis de curvas de disociación. Rev. Mex. Cienc. Pecu. 2016, 7, 489–505. [Google Scholar] [CrossRef]
- Cetzal-Ix, W.; Noguera-Savelli, E.; Martínez-Puc, J.F. Flora melífera de la Península de Yucatán, México: Estrategia para incrementar la producción de miel en los períodos de escasez de alimento de Apis mellifera L. Desde Herb. CICY 2019, 11, 172–179. [Google Scholar]
- Coh-Martínez, M.E.; Cetzal-Ix, W.; Zúñiga-Díaz, D.; Poot-Pool, W.S.; Noguera-Savelli, E.; Martínez-Puc, J.F.; Cuevas, M.J. Multiusos de la flora apícola: Una alternativa económica para los productores de Campeche, México. In Apicultura: Manejo, Nutrición, Sanidad y Flora Apícola; Universidad Autónoma de Campeche: Campeche, Mexico, 2017; pp. 90–103. [Google Scholar]
- Coh-Martínez, M.E.; Cetzal-Ix, W.; Martínez-Puc, J.F.; Basu, S.K.; Noguera-Savelli, E.; Cuevas, M.J. Perceptions of the local beekeepers on the diversity and flowering phenology of the melliferous flora in the community of Xmabén, Hopelchén, Campeche, Mexico. J. Ethnobiol. Ethnomed. 2019, 15, 16. [Google Scholar] [CrossRef]
- Briceño-Santiago, C.I.; Cano-Sosa, J.; Ramos-Díaz, A.L.; Noriega-Trejo, R.; Couoh-May, D.I. Estudio de la flora presente en apiarios de tres municipios en el estado de Yucatán, México. Polibotánica 2022, 53, 13–34. [Google Scholar] [CrossRef]
- Villalpando-Aguilar, J.L.; Quej-Chi, V.H.; López-Rosas, I.; Cetzal-Ix, W.; Aquino-Luna, V.A.; Alatorre-Cobos, F.; Martínez-Puc, J.F. Pollen types reveal floral diversity in natural honeys from Campeche, Mexico. Diversity 2022, 14, 740. [Google Scholar] [CrossRef]
- Pérez-Morfi, A.; Dorantes-Euan, A.; Rodríguez, R.; Ramírez-Arriaga, E.; Dupuy-Rada, J.M.; Canto, A. Diversity, structure, and composition of melliferous and non-melliferous vegetation surrounding meliponaries of the Yucatan Peninsula, Mexico. Bot. Sci. 2024, 102, 1109–1128. [Google Scholar] [CrossRef]
- Ríos-Oviedo, A.J.; Tucuch-Tun, R.; Cetzal-Ix, W.; Martínez-Puc, J.F.; Basu, S.K. Flora associated with stingless bees (Apidae: Meliponini) in the Yucatan Peninsula, Mexico. J. Apic. Res. 2024, 64, 1001–1013. [Google Scholar] [CrossRef]
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Brown, J.L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- ESRI. ArcGIS for Desktop 10.2. 2014. Available online: https://www.esri.com (accessed on 23 June 2024).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. Int. J. Clim. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Naimi, B. Usdm: Uncertainty Analysis for Species Distribution Models. R Package v. 1. 2015. Available online: https://cran.r-project.org/web/packages/usdm/ (accessed on 23 June 2024).
- Naimi, B.; Araújo, M.B. Sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. Kuenm: An R package for detailed development of ecological niche models using Maxent. Peer J. 2019, 7, e6281. [Google Scholar] [CrossRef]
- Bohl, C.L.; Kass, J.M.; Anderson, R.P. A new null model approach to quantify performance and significance for ecological niche models of species distributions. J. Biogeogr. 2019, 46, 1101–1111. [Google Scholar] [CrossRef]
- Morrone, J.J. Biogeographical regionalization of the Neotropical region. Zootaxa 2014, 3782, 1–110. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Pirani, A.; Fuglestvedt, J.S.; Byers, E.; O’Neill, B.; Riahi, K.; Lee, J.-Y.; Marotzke, J.; Rose, S.K.; Schaeffer, R.; Tebaldi, C. Scenarios in IPCC assessments: Lessons from AR6 and opportunities for AR7. npj Clim. Act. 2024, 3, 1. [Google Scholar] [CrossRef]
- Ebaldi, C.; Debeire, K.; Eyring, V.; Fischer, E.; Fyfe, J.; Friedlingstein, P.; Knutti, R.; Lowe, J.; O’Neill, B.; Sanderson, B.; et al. Climate model projections from the scenario model intercomparison project (scenario MIP) of CMIP6. Earth Syst. Dyn. 2021, 12, 253–293. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model. Develop. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Hausfather, Z. CMIP6: The Next Generation of Climate Change Models Explained. CarbonBrief, 2019. Available online: https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained/ (accessed on 11 January 2024).
- Elith, J.H.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Graham, C.H.; Elith, J.; Hijmans, R.J.; Guisan, A.; Peterson, A.T.; Loiselle, B.; NCEAS Predicting Species Distributions Working Group. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 2008, 45, 239–247. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Edwards, T.C., Jr.; Guisan, A.; McMahon, S.M.; Normand, S.; Wilfried Thuiller, W.; Wüest, R.O.; Zimmermann, N.E.; Elith, J. What do we gain from simplicity versus complexity in species distribution models? Ecography 2014, 37, 1267–1281. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in MaxEnt: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.J.; Butler, A.; Cooksley, S.L. The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods Ecol. Evol. 2016, 7, 679–692. [Google Scholar] [CrossRef]
- Ashraf, U.; Chaudhry, M.N.; Peterson, A.T. Ecological niche models of biotic interactions predict increasing pest risk to olive cultivars with changing climate. Ecosphere 2012, 12, e03714. [Google Scholar] [CrossRef]
- Anderson, R.P.; Lew, D.; Peterson, A. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol. Model. 2003, 162, 211–232. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Elith, J.H.; Graham, C.P.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papes, M.; Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Yates, K.L.; Bouchet, P.J.; Caley, M.J.; Mengersen, K.; Randin, C.F.; Parnell, S.; Fielding, A.H.; Bamford, A.J.; Ban, S.; Barbosa, A.M.; et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 2018, 33, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Wenger, S.J.; Olden, J.D. Assessing transferability of ecological models: An underappreciated aspect of statistical validation. Methods Ecol. Evol. 2012, 3, 260–267. [Google Scholar] [CrossRef]
- Hijmans, R.J. Geographic Data Analysis and Modeling. R Package Raster Version 3.4-10. 2021. Available online: https://cran.r-project.org/package=raster (accessed on 27 April 2024).
- Liu, C.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- IUCN (International Union for Conservation Nature and Natural Resources). The IUCN Red List of Threatened Species. Version 2021-33. 2024. Available online: https://www.iucnredlist.org/ (accessed on 15 May 2024).
- Lovejoy, T.E.; Hannah, L.J. Climate Change and Biodiversity; Yale University Press: New Haven, CT, USA, 2005. [Google Scholar]
- Araújo, M.B.; Thuiller, W.; Pearson, R.G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 2006, 33, 1712–1728. [Google Scholar] [CrossRef]
- Sheth, S.N.; Morueta-Holme, N.; Angert, A.L. Determinants of geographic range size in plants. New Phytol. 2020, 226, 650–665. [Google Scholar] [CrossRef]
- Cayuela, L.; Golicher, D.J.; Newton, A.C.; Kolb, M.; de Alburquerque, F.S.; Arets, E.J.M.M.; Alkemade, J.R.M.; Pérez, A.M. Species distribution modeling in the tropics: Problems, potentialities, and the role of biological data for effective species conservation. Trop. Conserv. Sci. 2009, 2, 319–352. [Google Scholar] [CrossRef]
- Crimmins, T.M.; Crimmins, M.A.; Berrtelsen, C.D. Flowering range changes across an elevation gradient in response to warming summer temperatures. Glob. Chang. Biol. 2009, 15, 1141–1152. [Google Scholar] [CrossRef]
- Tennakoon, S.; Apan, A.; Maraseni, T. Unravelling the impact of climate change of honeybees: An ensemble modelling approach to predict shifts in habitat suitability in Queensland, Australia. Ecol. Evol. 2024, 14, e11300. [Google Scholar] [CrossRef]
- Rahimi, E.; Jung, C. A review of remote sensing applications in flower phenology detection. J. Ecol. Environ. 2025, 49, 5. [Google Scholar] [CrossRef]
- Hulme, P.E. Consistent flowering response to global warming by European plants introduced into North America. Funct. Ecol. 2011, 25, 1189–1196. [Google Scholar] [CrossRef]
- Escobar-Luján, J.; Castaño-Quintero, S.M.; Villalobos, F.; Lira-Noriega, A.; Chiappa-Carrara, X.; Yañez-Arenas, C. Current and future geographic patterns of bird diversity dimensions of the Yucatan Peninsula and their representativeness in natural protected areas. Neotrop. Biodivers. 2022, 8, 242–252. [Google Scholar] [CrossRef]
- Franklin, J.; Serra-Diaz, J.M.; Syphard, A.D.; Regan, H.M. Global change and terrestrial plant community dynamics. Proc. Natl. Acad. Sci. USA 2016, 113, 3725–3734. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Y.; Yao, S.; Akram, M.A.; Hu, W.; Dong, L.; Li, H.; Wei, M.; Gong, H.; Xie, S.; et al. Impact of climate change on plant species richness across drylands in China: From past to present and into the future. Ecol. Ind. 2021, 132, 108288. [Google Scholar] [CrossRef]
- Cruz-Cárdenas, G.; López-Mata, L.; Silva, J.T.; Bernal-Santana, N.; Estrada-Godoy, F.; López-Sandoval, J.A. Potential distribution model of Pinaceae species under climate change scenarios in Michoacan. Rev. Chapingo Ser. Cienc. Amb. 2016, 22, 135–148. [Google Scholar] [CrossRef]
- Pinedo-Álvarez, C.; Renteria-Villalobos, M.; Aguilar-Soto, V.; Vega-Mares, J.H.; Melgoza-Castillo, A. Distribution dynamics of Picea chihuahuana Martínez populations under different climate change scenarios in Mexico. Glob. Ecol. Conserv. 2019, 17, e00559. [Google Scholar] [CrossRef]
- Benavides, E.; Breceda, A.; Anadón, J.D. Winners and losers in the predicted impact of climate change on cacti species in Baja California. Plant Ecol. 2021, 222, 29–44. [Google Scholar] [CrossRef]
- Kamer, Ö. Predicting the potential distribution area of the Platanus orientalis L. in Turkey today and in the future. Sustainability 2022, 14, 11706. [Google Scholar] [CrossRef]
- Thuiller, W.; Albert, C.; Araújo, M.B.; Berry, P.M.; Cabeza, M.; Guisan, A.; Hickler, T.; Midgley, G.F.; Paterson, J.; Schurr, F.M.; et al. Predicting global change impacts on plant species’ distributions: Future challenges. Perspect. Plant Ecol. Evol. Syst. 2008, 9, 137–152. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.; Morelli, T.L.; Morisette, J.T.; Muñoz, R.C.; et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef]
- Mahmoodi, S.; Heydari, M.; Ahmadi, K.; Khwarahm, N.R.; Karami, O.; Almasieh, K.; Naderi, B.; Bernard, P.; Mosavi, A. The current and future potential geographical distribution of Nepeta crispa Willd., an endemic, rare and threatened aromatic plant of Iran: Implications for ecological conservation and restoration. Ecol. Ind. 2022, 137, 108752. [Google Scholar] [CrossRef]
- Zhang, C.; Li, L.; Guan, Y.; Cai, D.; Chen, H.; Bian, X.; Guo, S. Impacts of vegetation properties characteristics on species richness patterns in drylands: Case study from Xinjiang. Ecol. Ind. 2021, 133, 108417. [Google Scholar] [CrossRef]
- Ortega, M.A.; Cayuela, L.; Griffith, D.M.; Camacho, A.; Coronado, I.M.; del Castillo, R.F.; Figueroa-Rangel, B.L.; Fonseca, W.; Garibaldi, C.; Kelly, D.L.; et al. Climate change increases threat to plant diversity in tropical forest of Central America and southern Mexico. PLoS ONE 2024, 19, e0297840. [Google Scholar] [CrossRef] [PubMed]
- Bio, A.M.; De Becker, P.; De Bie, E.; Huybrechts, W.; Wassen, M. Prediction of plant species distribution in lowland river valleys in Belgium: Modeling species response to site conditions. Biodivers. Conserv. 2022, 11, 2189–2216. [Google Scholar] [CrossRef]
- Giannini, T.C.; Saravia, A.M.; dos Santos, I. Ecological niche modeling and geographical distribution of pollinator and plants: A case study of Peponapis fervens (Smith, 1879) (Eucerini: Apidae) and Cucurbita species (Cucurbitaceae). Ecol. Inform. 2010, 5, 59–66. [Google Scholar] [CrossRef]
- Bellard, C.; Leclerc, C.; Leroy, B.; Bakkenes, M.; Veloz, S.; Thuiller, W.; Courchamp, F. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 2014, 23, 1376–1386. [Google Scholar] [CrossRef]
- Hortal, J.; Carrascal, L.M.; Triantis, K.A.; Thébault, E.; Meiri, S.; Sfenthourakis, S. Species richness can decrease with altitude but not with habitat diversity. Proc. Natl. Acad. Sci. USA 2013, 110, E2149–E2150. [Google Scholar] [CrossRef]
- Hortal, J.; de Bello, F.; Diniz-Filho, J.F.A.; Lewinsohn, T.M.; Lobo, J.M.; Ladle, R.J. Seven shortfalls that beset large-sacale knowledge on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 523–549. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological niches and geographic distributions. In Monographs in Population Biology 49; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Dunn, P.O.; Møller, A.P. Effects of Climate Change on Birds, 2nd ed.; Oxford University Press: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Espinosa, O.D.; Ocegueda, C.S.; Aguilar, Z.C.; Flores, V.O.; Llorente-Bousquets, J. El conocimiento biogeográfico de las especies y su regionalización natural. In Capital Natural de México: Conocimiento Actual de la Biodiversidad; Soberón, J., Halffter, G., Llorente-Bousquets, J., Eds.; CONABIO: Ciudad de México, Mexico, 2008; Volume 1, pp. 33–65. [Google Scholar]
- Rahbek, C.; Borregaard, M.K.; Antonelli, A.; Colwell, R.K.; Holt, B.G.; Nogues-Bravo, D.; Rasmussen, C.M.Ø.; Richardson, K.; Rosing, M.T.; Whittaker, R.J.; et al. Building mountain biodiversity: Geological and evolutionary processes. Science 2019, 365, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Angert, A.L.; Crozier, L.G.; Rissler, L.J.; Gilman, S.E.; Tewksbury, J.J.; Chunco, A.J. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 2011, 14, 677–689. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Clarke, H. Conserving biodiversity in the face of climate change. Agenda 2007, 14, 157–170. [Google Scholar] [CrossRef]
- Li, Y.; Cohen, J.M.; Rohr, J.R. Review and synthesis of the effects of climate change on amphibians. Integr. Zool. 2013, 8, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Schurr, F.M.; Midgley, G.F.; Rebelo, A.G.; Reeves, G.; Poschlod, P.; Higgins, S.I. Colonization and persistence ability explain the extent to which plant species fill their potential range. Glob. Ecol. Biogeog. 2007, 16, 449–459. [Google Scholar] [CrossRef]
- Wagner, D.L.; Grames, E.M.; Forister, M.L.; Berenbaum, M.R.; Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 2021, 118, e2023989118. [Google Scholar] [CrossRef]
- Zattara, E.E.; Aizen, M.A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 2021, 4, 114–123. [Google Scholar] [CrossRef]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B 2020, 375, 20190104. [Google Scholar] [CrossRef]
- Preece, N.D.; van Oosterzee, P.; Lawes, M.J. Reforestation success can be enhanced by improving tree planting methods. J. Environ. Manag. 2023, 336, 117645. [Google Scholar] [CrossRef]
- Mosandl, R. Reforestation in the Tropics and Subtropics. In 3 Degrees More; Wiegandt, K., Ed.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Loreto, F.; Atzori, G. Climate challenges: Can plants adapt in time? Front. Sci. 2024, 2, 1522649. [Google Scholar] [CrossRef]
- Neov, B.; Shumkova, R.; Palova, N.; Hristov, P. The health crisis in managed honeybees (Apis mellifera). Which factors are involved in this phenomenon? Biologia 2021, 76, 2173–2180. [Google Scholar] [CrossRef]
- Kortsch, S.; Timberlake, T.P.; Cirtwill, A.R.; Sapkota, S.; Rokoya, M.; Devkota, K.; Roslin, T.; Memmott, J.; Saville, N. Decline in honeybees and its consequences for beekeepers and crop pollination in western Nepal. Insects 2024, 15, 2181. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-G, R.; Roubik, D.W.; Colli-Ucán, W. Extinction of Melipora beecheii and traditional beekeeping in the Yucatan Peninsula. Bee World 2005, 86, 35–41. [Google Scholar] [CrossRef]
- Thuiller, W.; Guéguen, M.; Renaud, J.; Karger, D.N.; Zimmermann, N.E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 2019, 10, 1446. [Google Scholar] [CrossRef]
- Briscoe, N.J.; Morris, S.D.; Mathewson, P.D.; Buckley, L.B.; Jusup, M.; Levy, O.; Maclean, I.M.D.; Pincebourde, S.; Riddell, E.A.; Roberts, J.A.; et al. Mechanistic forescats of species responses to climate change: The promise of biophysical ecology. Glob. Chang. Biol. 2023, 29, 1451–1470. [Google Scholar] [CrossRef] [PubMed]
- Porfirio, L.L.; Harris, R.M.; Lefroy, E.C.; Hugh, S.; Gould, S.F.; Lee, G.; Bindoff, N.L.; Mackey, B. Improving the use of species distribution models in conservation planning and management under climate change. PLoS ONE 2014, 9, e113749. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers. Distrib. 2007, 13, 265–275. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aragón-Gastélum, J.L.; Ramírez-Albores, J.E.; Pérez-Suárez, M.; Vargas-Contreras, J.A.; Aguirre-Crespo, F.J.; Plascencia-Escalante, F.O.; Serrano-Rodríguez, A.; Plasencia-Vázquez, A.H. Assessment of the Impact of Climate Change on the Potential Distributions of Melliferous Plant Species on the Yucatan Peninsula, Mexico: Implications for Conservation Planning. Conservation 2025, 5, 44. https://doi.org/10.3390/conservation5030044
Aragón-Gastélum JL, Ramírez-Albores JE, Pérez-Suárez M, Vargas-Contreras JA, Aguirre-Crespo FJ, Plascencia-Escalante FO, Serrano-Rodríguez A, Plasencia-Vázquez AH. Assessment of the Impact of Climate Change on the Potential Distributions of Melliferous Plant Species on the Yucatan Peninsula, Mexico: Implications for Conservation Planning. Conservation. 2025; 5(3):44. https://doi.org/10.3390/conservation5030044
Chicago/Turabian StyleAragón-Gastélum, José Luis, Jorge E. Ramírez-Albores, Marlín Pérez-Suárez, Jorge Albino Vargas-Contreras, Francisco Javier Aguirre-Crespo, F. Ofelia Plascencia-Escalante, Annery Serrano-Rodríguez, and Alexis Herminio Plasencia-Vázquez. 2025. "Assessment of the Impact of Climate Change on the Potential Distributions of Melliferous Plant Species on the Yucatan Peninsula, Mexico: Implications for Conservation Planning" Conservation 5, no. 3: 44. https://doi.org/10.3390/conservation5030044
APA StyleAragón-Gastélum, J. L., Ramírez-Albores, J. E., Pérez-Suárez, M., Vargas-Contreras, J. A., Aguirre-Crespo, F. J., Plascencia-Escalante, F. O., Serrano-Rodríguez, A., & Plasencia-Vázquez, A. H. (2025). Assessment of the Impact of Climate Change on the Potential Distributions of Melliferous Plant Species on the Yucatan Peninsula, Mexico: Implications for Conservation Planning. Conservation, 5(3), 44. https://doi.org/10.3390/conservation5030044