Mitigation of Acid Mine Drainage Using Blended Waste Rock in Near-Equatorial Climates—Geochemical Analysis and Column Leaching Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Static Geochemical Analysis
2.2. Kinetic NAG Test
2.3. Column Leaching Test
3. Results and Discussion
3.1. Geochemical Properties of Rock Sample
3.2. Evaluation of the Balance of Acid-Producing/Acid-Neutralizing Reaction with the Kinetic NAG Test
3.3. Demonstration of Leaching Behavior from Blending Waste Rocks
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stockmann, M.; Hirsch, D.; Lippmann-Pipke, J.; Kupsch, H. Geochemical study of different-aged mining dump materials in the Freiberg mining district, Germany. Environ. Earth Sci. 2013, 68, 1153–1168. [Google Scholar] [CrossRef]
- Marescotti, P.; Azzali, E.; Servida, D.; Carbone, C.; Grieco, G.; De Capitani, L.; Lucchetti, G. Mineralogical and geochemical spatial analyses of a waste-rock dump at the Libiola Fe-Cu sulphide mine (Eastern Liguria, Italy). Environ. Earth Sci. 2010, 61, 187–199. [Google Scholar] [CrossRef]
- Otsuka, H.; Murakami, S.; Yamatomi, J.; Koide, R.; Tokoro, C. A Predictive Model forthe Future Treatment of Acid Mine Drainage with Regression Analysis and Geochemical Modeling. J. MMIJ 2014, 130, 488–493. [Google Scholar] [CrossRef]
- Blowes, D.W.; Ptacek, C.J.; Jambor, J.L.; Weisener, C.G. 9.05—The Geochemistry of Acid Mine Drainage. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Pergamon: Oxford, UK, 2003; pp. 149–204. [Google Scholar]
- Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.L.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef]
- Kuyucak, N. Acid mine drainage prevention and control options. CIM Bull. 2002, 95, 96–102. [Google Scholar]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Mine Wastes: Characterization, Treatment and Environmental Impacts; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–400. [Google Scholar]
- Mylona, E.; Xenidis, A.; Paspaliaris, I. Inhibition of acid generation from sulphidic wastes by the addition of small amounts of limestone. Miner. Eng. 2000, 13, 1161–1175. [Google Scholar] [CrossRef]
- Brady, K.B.C.; Smith, M.W.; Beam, R.L.; Cravotta, C.A. Effectiveness of the addition of alkaline materials at surface coal-mines in preventing or abating acid-mine drainage—Part 2. Mine site case-studies. In Proceedings of the 1990 Conference and Exhibition on Mining and Reclamation, Charleston, WV, USA, 23–26 April 1990; pp. 227–241. [Google Scholar]
- Zhang, Y.L.; Evangelou, V.P. Formation of ferric hydroxide-silica coatings on pyrite and its oxidation behavior. Soil Sci. 1998, 163, 53–62. [Google Scholar] [CrossRef]
- Evangelou, V.P. Pyrite microencapsulation technologies: Principles and potential field application. Ecol. Eng. 2001, 17, 165–178. [Google Scholar] [CrossRef]
- Perez-Lopez, R.; Nieto, J.M.; de Almodovar, G.R. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: Column experiments. Chemosphere 2007, 67, 1637–1646. [Google Scholar] [CrossRef]
- Yeheyis, M.B.; Shang, J.Q.; Yanful, E.K. Long-term evaluation of coal fly ash and mine tailings co-placement: A site-specific study. J. Environ. Manag. 2009, 91, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Mungazi, A.A.; Gwenzi, W. Cross-Layer Leaching of Coal Fly Ash and Mine Tailings to Control Acid Generation from Mine Wastes. Mine Water Environ. 2019, 38, 602–616. [Google Scholar] [CrossRef]
- Firman, F.; Haya, A.; Alkatiri, H. Study of Blending Fly Ash with Potentially Acid Forming Material to Prevent Acid Mine Drainage. J. Phys. Conf. Ser. 2020, 1569, 042075. [Google Scholar] [CrossRef]
- Sephton, M.G.; Webb, J.A.; McKnight, S. Applications of Portland cement blended with fly ash and acid mine drainage treatment sludge to control acid mine drainage generation from waste rocks. Appl. Geochem. 2019, 103, 1–14. [Google Scholar] [CrossRef]
- Kotsiopoulos, A.; Harrison, S.T.L. Application of fine desulfurised coal tailings as neutralising barriers in the prevention of acid rock drainage. Hydrometallurgy 2017, 168, 159–166. [Google Scholar] [CrossRef]
- Kotsiopoulos, A.; Harrison, S.T.L. Co-disposal of benign desulfurised tailings with sulfidic waste rock to mitigate ARD generation: Influence of flow and contact surface. Miner. Eng. 2018, 116, 62–71. [Google Scholar] [CrossRef]
- Mjonono, D. Development of Co-Disposal Methods for Coal Discards and Fine Waste for the Prevention of Acid Mine Drainage. Master Thesis, University of Cape Town, Cape Town, South Africa, 2019. [Google Scholar]
- Li, A.; Andruchow, B.; Wislesky, I.; Olson, E. Field Testing of Co-Disposal Techniques for Acid Generating Tailings and Waste Rock at Cerro de Maimón Mine; University of British Columbia Library: Vancouver, BC, Canada, 2011. [Google Scholar]
- Mbonimpa, M.; Bouda, M.; Demers, I.; Benzaazoua, M.; Bois, D.; Gagnon, M. Preliminary geotechnical assessment of the potential use of mixtures of soil and acid mine drainage neutralization sludge as materials for the moisture retention layer of covers with capillary barrier effects. Can. Geotech. J. 2016, 53, 828–838. [Google Scholar] [CrossRef]
- Fall, M.; Celestin, J.C.; Han, F.S. Suitability of bentonite-paste tailings mixtures as engineering barrier material for mine waste containment facilities. Miner. Eng. 2009, 22, 840–848. [Google Scholar] [CrossRef]
- Wilson, G.W.; Miskolczi, J.; Dagenais, A.M.; Levesque, I.; Smith, Q.; Lanteigne, L.; Hulett, L.; Landriault, D. The application of blended waste rock and tailings for cover systems in minewaste management. In Proceedings of the 7th International Conference on Acid Rock Drainage 2006, ICARD—Also Serves as the 23rd Annual Meetings of the American Society of Mining and Reclamation, St. Louis, MO, USA, 26–30 March 2006; pp. 2424–2438. [Google Scholar]
- Min, M.; Pu, H.F.; He, X.; Deng, S.Y. Anti-seepage performance and oxygen barrier performance of the three-layered landfill cover system comprising neutralized slag under extreme climate conditions. Eng. Geol. 2024, 342, 107750. [Google Scholar] [CrossRef]
- Mbonimpa, M.; Ngabu, É.T.; Belem, T.; Kanteye, O.; Maqsoud, A. Optimization of Soil-Sludge Mixtures by Compaction for Potential Use in Mine Site Reclamation. Minerals 2023, 13, 806. [Google Scholar] [CrossRef]
- Lu, J.; Leiviskä, T.; Walder, I. The effect of temperature and digested sewage sludge cover over tailings on the leaching of contaminants from Ballangen tailings deposit. J. Water Clim. Chang. 2021, 12, 3573–3581. [Google Scholar] [CrossRef]
- Nigéus, S.; Maurice, C.; Lindblom, J. Hydrogeological Properties of Till Amended with Green Liquor Dregs (GLD): Recycling of an Industrial Residue for Reclamation of Acid Generating Mine Sites. Geotech. Geol. Eng. 2023, 41, 3625–3639. [Google Scholar] [CrossRef]
- Soares, A.B.; Possa, M.V.; de Souza, V.P.; Soares, P.S.M.; de Aguiar, M.F.P. Dry Covers Applied to Coal Tailings. Mine Water Environ. 2022, 41, 666–678. [Google Scholar] [CrossRef]
- Pakostova, E.; McAlary, M.; Marshall, S.; McGarry, S.; Ptacek, C.J.; Blowes, D.W. Microbiology of a multi-layer biosolid/desulfurized tailings cover on a mill tailings impoundment. J. Environ. Manag. 2022, 302, 114030. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, Z.; Modabberi, S.; Jafari, M.R.; Ajayebi, K.S. Comparison of different static methods for assessment of AMD generation potential in mining waste dumps in the Muteh Gold Mines, Iran. Environ. Monit. Assess. 2015, 187, 14. [Google Scholar] [CrossRef]
- Servida, D.; Comero, S.; Dal Santo, M.; de Capitani, L.; Grieco, G.; Marescotti, P.; Porro, S.; Forray, F.L.; Gal, A.; Szakacs, A. Waste rock dump investigation at Rosia Montana gold mine (Romania): A geostatistical approach. Environ. Earth Sci. 2013, 70, 13–31. [Google Scholar] [CrossRef]
- Changul, C.; Sutthirat, C.; Padmanahban, G.; Tongcumpou, C. Assessing the acidic potential of waste rock in the Akara gold mine, Thailand. Environ. Earth Sci. 2010, 60, 1065–1071. [Google Scholar] [CrossRef]
- Modabberi, S.; Alizadegan, A.; Mirnejad, H.; Esmaeilzadeh, E. Prediction of AMD generation potential in mining waste piles, in the sarcheshmeh porphyry copper deposit, Iran. Environ. Monit. Assess. 2013, 185, 9077–9087. [Google Scholar] [CrossRef]
- Parbhakar-Fox, A.; Fox, N.; Hill, R.; Ferguson, T.; Maynard, B. Improved mine waste characterisation through static blended test work. Miner. Eng. 2018, 116, 132–142. [Google Scholar] [CrossRef]
- Vaziri, V.; Sayadi, A.R.; Mousavi, A.; Parbhakar-Fox, A.; Monjezi, M. Mathematical modeling for optimized mine waste rock disposal: Establishing more effective acid rock drainage management. J. Clean. Prod. 2021, 288, 125124. [Google Scholar] [CrossRef]
- Vaziri, V.; Sayadi, A.R.; Parbhakar-Fox, A.; Mousavi, A.; Monjezi, M. Improved mine waste dump planning through integration of geochemical and mineralogical data and mixed integer programming: Reducing acid rock generation from mine waste. J. Environ. Manag. 2022, 309, 114712. [Google Scholar] [CrossRef] [PubMed]
- AMIRA. ARD Test Handbook. Project P387A. Prediction and Kinetic Control of Acid Mine Drainage; AMIRA International Limited: Melbourne, Australia, 2002. [Google Scholar]
- Sobek, A.; Schuller, W.A.; Freeman, J.R.; Smith, R.M. Field and Laboratory Methods Applicable to Overburden and Mine Soils; Industrial Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Cincinnati, OH, USA, 1978.
- Miller, S.; Robertson, A.; Donahue, T. Advances in Acid Drainage Prediction Using the Net Acid Generating (NAG) Test; CANMET, Natural Resources Canada: Ottawa, ON, Canada, 1997; pp. 533–549. [Google Scholar]
- Stewart, W.; Miller, S.; Smart, R. Advances in acid rock drainage (ARD) characterisation of mine WASTES1. J. Am. Soc. Min. Reclam. 2006, 2006, 2098–2119. [Google Scholar] [CrossRef]
- Shimada, H.; Kusuma, G.J.; Hiroto, K.; Sasaoka, T.; Matsui, K.; Gautama, R.S.; Sulistianto, B. Development of a new covering strategy in Indonesian coal mines to control acid mine drainage generation: A laboratory-scale result. Int. J. Min. Reclam. Environ. 2012, 26, 74–89. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; CRC Press: London, UK, 2005. [Google Scholar]
- Pabst, T.; Aubertin, M.; Bussière, B.; Molson, J. Column Tests to Characterise the Hydrogeochemical Response of Pre-oxidised Acid-Generating Tailings with a Monolayer Cover. Water Air Soil Pollut. 2014, 225, 1841. [Google Scholar] [CrossRef]
- Benzaazoua, M.; Bussière, B.; Dagenais, A.M.; Archambault, M. Kinetic tests comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environ. Geol. 2004, 46, 1086–1101. [Google Scholar] [CrossRef]
Sample | SiO2 (%) | Al2O3 (%) | FeO (%) | MnO (%) | K2O (%) | MgO (%) | CaO (%) | S (%) |
---|---|---|---|---|---|---|---|---|
WRD-1 | 57.74 | 17.54 | 7.18 | 0.12 | 3.34 | 5.30 | 1.22 | 0.14 |
WRD-2 | 85.34 | 7.53 | 0.73 | 0.00 | 1.69 | 0.71 | 0.04 | 0.51 |
WRD-3 | 71.91 | 13.99 | 2.35 | 0.01 | 3.39 | 0.85 | 0.06 | 1.64 |
Sample | Paste pH | NAG pH | S Mass (%) | MPA * | ANC * | NAPP * | Classification |
---|---|---|---|---|---|---|---|
WRD-1 | 8.5 | 7.8 | 0.14 | 4.1 | 19.3 | −15.2 | NAF |
WRD-2 | 4.3 | 3.6 | 0.51 | 15.7 | −2.2 | 17.9 | PAF |
WRD-3 | 3.3 | 2.4 | 1.64 | 50.1 | −10.6 | 60.7 | PAF |
Sample | WRD-1 (%) | WRD-2 (%) | WRD-3 (%) | NAPP (kg H2SO4/ton) |
---|---|---|---|---|
1 | 100 | 0 | 0 | −15.2 |
2 | 60 | 40 | 0 | −1.9 |
3 | 40 | 60 | 0 | 4.7 |
4 | 20 | 80 | 0 | 11.3 |
5 | 0 | 100 | 0 | 17.9 |
6 | 80 | 0 | 20 | 0.0 |
7 | 60 | 0 | 40 | 15.2 |
8 | 40 | 0 | 60 | 30.4 |
9 | 0 | 0 | 100 | 60.7 |
Sample | Cycle 2 | Cycle 6 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SO42− (mg/L) | Na+ (mg/L) | K+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | SO42− (mg/L) | Na+ (mg/L) | K+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | |
WRD-1 | 82.1 | 4.1 | 3.8 | 19.4 | 0.4 | 7.0 | 0.3 | 2.5 | 22.8 | 3.8 |
WRD-2 = 40% | 532.8 | 0.7 | 4.4 | 198.4 | 19.7 | 87.6 | 0.0 | 0.0 | 52.1 | 4.9 |
WRD-2 = 60% | 1273.2 | 2.2 | 0.0 | 423.2 | 56.7 | 271.4 | 0.0 | 0.0 | 104.0 | 8.2 |
WRD-2 = 80% | 917.0 | 0.0 | 0.0 | 265.0 | 30.6 | 138.3 | 0.0 | 2.0 | 56.3 | 3.4 |
WRD-2 = 100% | 4651.0 | 0.0 | 0.0 | 124.5 | 16.5 | 121.6 | 0.0 | 0.0 | 7.8 | 1.2 |
WRD-3 = 20% | 833.2 | 1.0 | 4.8 | 290.4 | 40.3 | 443.5 | 0.0 | 2.6 | 168.7 | 15.6 |
WRD-3 = 40% | 1591.0 | 0.0 | 0.0 | 520.5 | 67.5 | 1044.8 | 0.0 | 0.0 | 399.6 | 24.1 |
WRD-3 = 60% | 871.7 | 0.0 | 0.0 | 137.4 | 32.3 | 391.9 | 0.0 | 0.0 | 103.5 | 14.0 |
WRD-3 = 100% | 9851.5 | 0.0 | 0.0 | 35.0 | 108.0 | 1091.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamanaka, A.; Sasaoka, T.; Shimada, H.; Matsumoto, S.; Kusuma, G.J.; Deni, M.C.N. Mitigation of Acid Mine Drainage Using Blended Waste Rock in Near-Equatorial Climates—Geochemical Analysis and Column Leaching Tests. Physchem 2024, 4, 470-482. https://doi.org/10.3390/physchem4040033
Hamanaka A, Sasaoka T, Shimada H, Matsumoto S, Kusuma GJ, Deni MCN. Mitigation of Acid Mine Drainage Using Blended Waste Rock in Near-Equatorial Climates—Geochemical Analysis and Column Leaching Tests. Physchem. 2024; 4(4):470-482. https://doi.org/10.3390/physchem4040033
Chicago/Turabian StyleHamanaka, Akihiro, Takashi Sasaoka, Hideki Shimada, Shinji Matsumoto, Ginting Jalu Kusuma, and Mokhamad Candra Nugraha Deni. 2024. "Mitigation of Acid Mine Drainage Using Blended Waste Rock in Near-Equatorial Climates—Geochemical Analysis and Column Leaching Tests" Physchem 4, no. 4: 470-482. https://doi.org/10.3390/physchem4040033
APA StyleHamanaka, A., Sasaoka, T., Shimada, H., Matsumoto, S., Kusuma, G. J., & Deni, M. C. N. (2024). Mitigation of Acid Mine Drainage Using Blended Waste Rock in Near-Equatorial Climates—Geochemical Analysis and Column Leaching Tests. Physchem, 4(4), 470-482. https://doi.org/10.3390/physchem4040033